Skip to main content

Olfactory Sensory Transduction

  • Chapter
Neurobiology

Part of the book series: NATO ASI Series ((NSSA,volume 289))

Abstract

Organisms continuously monitor their environment, employing highly specialized systems such as vision, hearing and olfaction to extract pertinent information from an array of physical stimuli. These physical sensations are then transformed into transduction events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shepherd GM (1994) Discrimination of molecular signals by the olfactory receptor neuron. Neuron 13:771–790

    Article  PubMed  CAS  Google Scholar 

  2. Dahl A (1988) The effect of cytochrome P450-dependent metabolism and other enzyme activites on olfaction. In: Margolis TV (ed) Molecular Neurobioloy of the Olfactory System. Plenum Press, New York, pp 51–70

    Chapter  Google Scholar 

  3. Hibert MF, Trump-Kallmeyer S, Bruinvels A, Hoflack J (1991) Three-dimensional models of neurotransmitter G-binding protein coupled receptors. Molecular Pharmacology 40:8–15

    PubMed  CAS  Google Scholar 

  4. Kurahashi T, Yau K-W (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74

    Article  PubMed  CAS  Google Scholar 

  5. Firestein S, Shepherd GM (1995) Interaction of anionic and cationic currents leads to a voltage dependence in the odor response of olfactory receptor neurons. Journal of Neurophysiology 73:562–567

    PubMed  CAS  Google Scholar 

  6. Kaissling K-E (1986) Chemo-electrical transduction in insect olfactory receptors. Annual Review of Neuroscience 9:121–145

    Article  PubMed  CAS  Google Scholar 

  7. Lancet D (1986) Vertebrate olfactory reception. Annual Review of Neuroscience 9:329–355

    Article  PubMed  CAS  Google Scholar 

  8. Kaissling K-E, Thorson J (1980) Insect olfactory sensilla:structural, chemical and electrical aspects of the functional organization. In: Satelle DB, Hall ML, Hildebrand JG (ed) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland, Amsterdam, pp 261–282

    Google Scholar 

  9. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  PubMed  CAS  Google Scholar 

  10. Bignetti E, Cavaggioni A, Pelosi P, Persaud KC, Sorbi RT, Tirindelli R (1985) Purification and characterization of an odorant-binding protein from cow nasal tissue. European Journal of Biochemistry 149:227–231

    Article  PubMed  CAS  Google Scholar 

  11. Pevners J, Sklar P, Snyder SH (1985) Characterization of an odorant-binding protein from bovine and rat nasal mucosa. Proc. Natl Acad. Sci. 83:4942–4946

    Google Scholar 

  12. Lee KH, Wells RG, Reed RR (1987) Isolation of an olfactory cDNA: similarity to retinal-binding protein suggest a role in olfaction. Science 1053–1056

    Google Scholar 

  13. Vogt RG, Rybczynski R, Lerner MR (1990) The biochemistry of odorant reception and transduction. In: Schild D (ed) Chemosensory Information Processing. Springer Verlag, Berlin, pp 33–76

    Chapter  Google Scholar 

  14. Buck LB, Axel R (1991) A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  15. Ressler KJ, Sullivan SL, Buck LB (1994) A molecular dissection of spatial patterning in the olfactory system. Current Opinion in Neurobiology 4:588–596

    Article  PubMed  CAS  Google Scholar 

  16. Ngai J, Dowling MM, Buck LB, Axel R, Chess A (1993) The family of genes encoding odorant receptors in the channel catfish. Cell 72:657–666

    Article  PubMed  CAS  Google Scholar 

  17. Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, Ledent C, Mollereau C, Gerard C, Grootegoed A, Vassart G (1992) Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355:453–455

    Article  PubMed  CAS  Google Scholar 

  18. Pace U, Hanski E, Salomon Y, Lancet D (1985) Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316:255–258

    Article  PubMed  CAS  Google Scholar 

  19. Sklar PB, Anholt RRH, Snyder SH (1986) The odorant sensitive adenylate cyclase of olfactory receptor cells: Differential stimulation by distinct classes of odorants. Journal of Biological Chemistry 261:15538–15543

    PubMed  CAS  Google Scholar 

  20. Breer H, Boekhoff I, Tareilus E (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature 345:65–68

    Article  PubMed  CAS  Google Scholar 

  21. Restrepo D, Boekhoff I, Breer H (1993) Rapid kinetic measurements of second messenger formation in olfactory cilia from channel catfish. The American Journal of Physiology 264:c906–c911

    Google Scholar 

  22. Jones DT, Reed RR (1989) Golf: An olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    Article  PubMed  CAS  Google Scholar 

  23. Krupinski J, Coussen F, Bakalyar HA, Tang W-J, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG (1989) Adenylyl cyclase amino acid sequence: Possible channel-or transporter-like structure. Science 244:1558–1564

    Article  PubMed  CAS  Google Scholar 

  24. Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura T, Gold GH (1987) A cyclic-nucleotide gated conductance in olfactory receptor cilia. Nature 325:442–444

    Article  PubMed  CAS  Google Scholar 

  26. Dhallan RS, Yau K-W, Schrader KA, Reed RR (1990) Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347:184–187

    Article  PubMed  CAS  Google Scholar 

  27. Ludwig J, Margalit T, Eismann E, Lancet D, Kaupp UB (1990) Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Letters 270:24–29

    Article  PubMed  CAS  Google Scholar 

  28. Goulding E, Ngai J, Kramer R, Colicos S, Axel R, Siegelbaum S, Chess A (1992) Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons. Neuron 8:45–58

    Article  PubMed  CAS  Google Scholar 

  29. Zufall F, Firestein S, Shepherd GM ( 1991 ) Analysis of single cyclic nucleotide-gated channels in olfactory receptor cells. Journal of Neuroscience 11:3573–3580

    PubMed  CAS  Google Scholar 

  30. Yau K-W (1994) Cyclic nucleotide-gated channels: An expanding new family of ion channels. Proc. Natl. Acad.Sci. 91:3481–3483

    Article  PubMed  CAS  Google Scholar 

  31. Kaupp UB, Altenhofen W (1992) Cyclic nucleotide-gated channels of vertebrate photoreceptor cells and olfactory epithelium. In: Corey DP, Roper SD (ed) Sensory Transduction. Rockefeller Univ Press, New York, pp 133–150

    Google Scholar 

  32. Firestein S, Zufall F (1994) The cyclic nucleotide-gated channel of olfactory receptor neurons. Seminars in Cell Biology 5:39–46

    Article  PubMed  CAS  Google Scholar 

  33. Firestein S (1992) Physiology of transduction in the single olfactory sensory neuron. In: Corey DP, Roper SD (ed) Sensory Transduction. Rockefeller Univ Press, New York, pp 61–71

    Google Scholar 

  34. Firestein S, Picco C, Menini A (1993) The relation between stimulus and response in olfactory receptor cells of the tiger salamander. Journal of Physiology 468:1–10

    PubMed  CAS  Google Scholar 

  35. Menini A, Picco, C, and Firestein, S (1995) Quantal-like current fluctuations induced by odorants in olfactory receptor cells. Nature 373:435–437

    Article  PubMed  CAS  Google Scholar 

  36. Kurahashi T (1989) Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. Journal of Physiology 419:177–192

    PubMed  CAS  Google Scholar 

  37. Zufall F, Shepherd GM, Firestein S (1991) Inhibition of the olfactory cyclic nucleotide-gated ion channel by intracellular calcium. Proc Roy Soc Ser B 246:225–230

    Article  CAS  Google Scholar 

  38. Kramer RH, Siegelbaum SA (1992) Intracellular Ca2+ regulates the sensitivity of cyclic nucleotide-gated channels in olfactory receptor neurons. Neuron 9:897–906

    Article  PubMed  CAS  Google Scholar 

  39. Liu M, Chen T-Y, Basheer A, Li J, Yau K-W (1994) Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266:1348–1354

    Article  PubMed  CAS  Google Scholar 

  40. Borisy FF, Ronnett GV, Cunningham AM, Julifs D, Beavo J, Snyder SH (1992) Calcium/calmodulin-ac-tivated phosphodiesterase expressed in olfactory receptor neurons. Journal of Neuroscience 12:915–923

    PubMed  CAS  Google Scholar 

  41. Dohlman HG, Torner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven-trans-membrane-segment receptors. Annual Review of Biochemistry 60:653–688

    Article  PubMed  CAS  Google Scholar 

  42. Dawson TM, Arriza JL, Jaworsky DE, Borisy FF, Attramadal H, Lefkowitz RJ, Ronnett GV (1993) B-adrenergic receptor kinase-2 and B-arrestin-2 as mediators of odorant-induced desensitization. Science 259:825–829

    Article  PubMed  CAS  Google Scholar 

  43. Breer H, Boekhoff I, Krieger J, Raming K, Strotmann J, Tareilus E (1992) Molecular mechanisms of olfactory signal transduction. In: Corey DP, Roper SD (ed) Sensory Transduction. Rockefeller University Press, New York, pp 93–108

    Google Scholar 

  44. Boekhoff I, Breer H (1990) Differential stimulation of second messengers pathways by distinct classes of odorants. Neurochemistry International 17:553–557

    Article  PubMed  CAS  Google Scholar 

  45. Boekhoff I, Tareilus E, Strotmann J, Breer H (1990) Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO Journal 2453–2458

    Google Scholar 

  46. Kalinoski DL, Aldinger SB, Boyle AG, Huque T, Marecek JF, Prestwich GD, Restrepo D (1992) Characterization of a novel inositol 1,4,5-triphosphate receptor in isolated olfactory cilia. Biochemical Journal 281:449–456

    PubMed  CAS  Google Scholar 

  47. Fadool DA, Ache BW (1992) Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9:907–918

    Article  PubMed  CAS  Google Scholar 

  48. Okada Y, Teeter JH, Restrepo D (1994) Inositol 1,4,5-trisphosphate-gated conductance in isolated rat olfactory neurons. Journal of Neurophysiology. 71:595–602

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Broillet, MC., Firestein, S. (1996). Olfactory Sensory Transduction. In: Torre, V., Conti, F. (eds) Neurobiology. NATO ASI Series, vol 289. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5899-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5899-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7706-1

  • Online ISBN: 978-1-4615-5899-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics