Skip to main content

The Chemical Reactivity and Structure of Collagen Studied by Neutron Diffraction

  • Chapter
Neutrons in Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 64))

  • 453 Accesses

Abstract

The chemical reactivity of collagen can be studied using neutron diffraction (a nondestructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaldehyde adducts in tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacon, G.E., (1975). Neutron Diffraction, Oxford, Clarendon Press.

    Google Scholar 

  • Baraona, E., Liu, W., Ma, X.-L., Svegliati-Baroni, G., & Lieber, C.S., (1993). Acetaldehyde-collagen adducts in N-nitrosodimethylamine induced liver cirrhosis in rats. Life Sciences, 52:1249–1255.

    PubMed  CAS  Google Scholar 

  • Borch, R.F., Bernstein, M.D., & Durst, H.D., (1971). The cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc., 93:2897–2904.

    Article  CAS  Google Scholar 

  • Bradshaw, J.P., Miller, A., & Wess, T.J., (1989). Phasing the meridional diffraction pattern of type I collagen using isomorphous derivatives. J. Mol. Biol., 205:685–694.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, M., (1989). Changes in the cross-linking of collagen from rat tail tendon due to diabetes. J. Biol. Chem., 264:20953–20960.

    PubMed  CAS  Google Scholar 

  • Cox, R.W., Grant, R.A, & Kent, C.M., (1973). An electron microscope study of the reaction of collagen with some monoaldehydes and bifunctional aldehydes. J. Cell Sci., 12:933–949.

    PubMed  CAS  Google Scholar 

  • Donohue, T.M., Tuma, D.J., & Sorrell, M.F., (1983). Binding of metabolically derived acetaldehyde to hepatic proteins in vitro. Lab. Investigation, 49:226–229.

    CAS  Google Scholar 

  • Fraser, R.D.B., MacRae, T.P., & Miller, A., (1983). Molecular conformation and packing in collagen fibrils. J. Mol. Biol., 167:497–521.

    Article  PubMed  CAS  Google Scholar 

  • Hulmes, D.J.S., Miller, A., White, S.W., Timmins, P.A., & Berthet-Colominas, C., (1980). Interpretation of the low angle meridional neutron diffraction patterns from collagen-fibres in terms of the amino acid sequence. Int. J. Biol. Macromol., 2:338–345.

    Article  CAS  Google Scholar 

  • Ibel, K., (1976). Neutron small angle camera D11 at high flux reactor, Grenoble. J. Appl. Cryst., 9:630–643.

    Article  Google Scholar 

  • James, V.J., Delbridge, L., McLennan, S.V., & Yue, D.K., (1991). Use of X-ray diffraction in the study of human diabetic and aging collagen. Diabetes, 40:391–394.

    Article  PubMed  CAS  Google Scholar 

  • Kent, M. J.C., Light, N.D., & Bailey, A.J., (1985). Evidence for glucose-mediated covalent crosslinking of collagen after glycosylation in vitro. Biochem. J., 225:745–752.

    PubMed  CAS  Google Scholar 

  • Le Pape, A., Guitton, J.-D., & Muh, J.-P., (1984). Distribution of non-enzymatically bound glucose in in vivo and in vitro glycosylated type I collagen molecules. FEBS Letts., 170:23–27.

    Article  Google Scholar 

  • Maillard, L.C., (1912). Action des acides amines sur les sucres: formation de melanoidines par voie methodique. C. R. Acad. Sci., 154:66–68.

    CAS  Google Scholar 

  • Meek, K.M., Chapman, J.C., & Hardcastle, R.A., (1979). Staining pattern of collagen fibrils — Improved correlation with sequence data. J. Biol. Chem., 254:10710–10714.

    PubMed  CAS  Google Scholar 

  • Perejda, A.J., Zaragoza, E.J., Eriksen, E., & Uitto, J., (1984). Non-enzymatic glucosylation of lysyl and hydroxylysyl residues in type I and type II collagens. Collagen Related Res., 4:427–439.

    CAS  Google Scholar 

  • Reiser, K.M., (1991). Non-enzymatic glycation of collagen in aging and diabetes. Proc. Soc. Exp. Biol., 196:17–29.

    PubMed  CAS  Google Scholar 

  • Reynolds, T.M., (1969). In Symposium on foods carbohydrates and their roles. H.W. Schultz, R.F. Cain and R.W. Wrolstad, editors. Avi Westport Conn. pp 219–252.

    Google Scholar 

  • Richard, S., Tamas, C., Sell, D.R., & Monnier, V.M., (1991). Tissue specific effects of aldose reductase inhibition on fluorescence and crosslinking of extracellular matrix in chronic galactosemia. Relationship to pentosidine crosslinks. Diabetes, 40:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  • Robins, S.P., (1983). Analysis of the crosslinking components of collagen and elastin. Methods of Biochemical Analysis, 28:329–379.

    Article  Google Scholar 

  • Robins, S.P., & Bailey, A.J., (1972). Age related changes in collagen: The identification of reducible lysine carbohydrate condensation products. Biochem. Biophys. Res. Comm., 48:76–84.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, H., Modrak, J.B., Hassing, J.M., Al-Turk, W.A., & Stohs, S.J., (1979). Glycosylated collagen. Biochem. Biophys. Res. Comm., 91:498–501.

    Article  PubMed  CAS  Google Scholar 

  • Rucklidge, G.J., Bates, G.P., & Robins, S.P., (1983). Preparation and analysis of the products of non-enzymatic protein glycosylation and their relationship to crosslinking of proteins. Biochim. Biophys. Acta., 747:165–70.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.E., & Orford, C.R., (1981). Dermatan sulphate-rich proteoglycan associates with rat tail tendon collagen at the D band in the gap region. Biochem. J., 197:213–216.

    PubMed  CAS  Google Scholar 

  • Spiro, R.G., (1969). Characterisation and quantitative determination of hydroxylysine linked carbohydrate units of several collagens. J. Biol. Chem., 244:602–612.

    PubMed  CAS  Google Scholar 

  • Tanaka, S., Avigad, G., Brodsky, B., & Eikenberry, E.F., (1988). Glycation induces expansion of the molecular packing of collagen. J. Mol. Biol., 203:495–505.

    Article  PubMed  CAS  Google Scholar 

  • Wess, T.J., Bradshaw, J.P., & Miller, A., (1990). Cross-linkage sites in type I collagen fibrils studied by neutron diffraction. J. Mol. Biol., 203:1–5.

    Article  Google Scholar 

  • Wess, T.J., Wess, L., Miller, A., Lindsay, R.M., & Baird, J.D., (1993). The in vivo glycation of diabetic tendon collagen studied by neutron diffraction. J. Mol. Biol., 230:1297–1303.

    Article  PubMed  CAS  Google Scholar 

  • Wess, T.J., Wess, L., & Miller, A., (1994). The in vitro binding of acetaldehyde to collagen studied by neutron diffraction. Alcohol and Alcoholism, 29:403–409.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wess, T.J., Wess, L., Miller, A. (1996). The Chemical Reactivity and Structure of Collagen Studied by Neutron Diffraction. In: Schoenborn, B.P., Knott, R.B. (eds) Neutrons in Biology. Basic Life Sciences, vol 64. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5847-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5847-7_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7680-4

  • Online ISBN: 978-1-4615-5847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics