Skip to main content

Modeling Heterogeneities and Elastic Anisotropy in Single Crystal Zinc and Carbon Fiber Epoxy Composites

  • Chapter
Nondestructive Characterization of Materials VIII

Abstract

Laser generated ultrasound has been used to determine material properties and to characterize material defects [1–3]. To a large extent, the success of laser ultrasonics has been the researcher’s ability to correctly predict the temporal evolution of the displacement waveform resulting from pulsed laser irradiation. Theories that assume isotropic elastic properties work well for crystalline materials that have randomly oriented grains with grain sizes that are small compared to the wavelength of the interrogating ultrasonic wave [4–5]. For single crystal samples or carbon epoxy composites, the elastic anisotropic nature must be taken into account. A number of researchers have shown that the behavior of single crystal materials in the presence of an ultrasonic disturbance differ markedly from their isotropic counterparts [6–13]. Mourad et al. [6] used the Cagniard-de Hoop method [14] to numerically obtain the solutions to Lamb’s [15] problem in an anisotropic half-space. In their paper, Mourad et al. assumed that the laser source could be modeled as a shear stress dipole applied at the bounding surface. In addition, Weaver et al. [7] have studied the elastodynamic response of a thick transversely isotropic plate to a normal point source applied at the bounding surface. Of particular interest is the work by Payton [13], who has treated a general class of problems for crystals that exhibit transverse isotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Scruby, C. B., Dewhurst, R. J., Hutchins, D. A., Palmer, S.B., Quantitative Studies of Thermally Generated Elastic Waves in Laser-Irradiated Metals, Journal of Applied Physics (1980) 51 6210–6216.

    Article  Google Scholar 

  2. Scruby, C. B., Smith, R. L., Moss, B. C., NDT Int (1986) 19, 307.

    Article  CAS  Google Scholar 

  3. Telschow, K., Review of Progress in Quantitative Nondestructive Evaluation, (Plenum, New York, 1988) Vol. 7b, p.1211.

    Book  Google Scholar 

  4. Rose, R. L. F., Point Source Representation for Laser Generated Ultrasound, Journal of the Acoustical Society of Americal (1984) 73 723.

    Article  Google Scholar 

  5. Telschow, K., Conant, R., Optical and Thermal Parameter Effects on Laser Generated Ultrasound, Journal of the Acoustical Society of America (1990) 88, 1494–1502.

    Article  Google Scholar 

  6. Mourad, A., Deschamps, M., Castangnède, B., Acoustic Waves Generated by a Transient Line Source in an Anisotropie Half-Space, Acustica (1996) 82 839–851.

    Google Scholar 

  7. Weaver, R. L., Sachse, W., Kwang, Y.K., Transient Elastic Waves in a Transversely Isotropic Plate, J Applied Mech (1996) 63 337–346.

    Article  CAS  Google Scholar 

  8. Royer, D., Dieulesaint, E., Rayleigh Wave Velocity and Displacement in Orthorhombic, Tetragonal, Hexagonal, and Cubic Crystals, Journal of the Acoustical Society of America (1984) 76 1438–1444.

    Article  CAS  Google Scholar 

  9. Kraut, E. A. Rev. Geophys (1963) 1 401.

    Article  Google Scholar 

  10. Burridge, R., Lamb’s Problem for an Anisotropic Half-Space, Quarterly Journal of Mechanics and Applied Mathematics, 24, 81–98, (1970).

    Article  Google Scholar 

  11. Willis, J. R., and Bedding, R. J., Arrivals Associated with a Class of Self-Similar Problems in Elastodynamics, Mathematical Proceedings of the Cambridge Philosophical Society, 77, 591–607, (1975).

    Article  Google Scholar 

  12. Musgrave, M. J. P. Crystal Acoustics, Holden-Day, Inc., San Francisco (1970).

    Google Scholar 

  13. R.G. Payton, Elastic Wave Propagation in Transversely Isotropic Media, Martinus Nijhoff Publisher, The Hague (1983).

    Book  Google Scholar 

  14. Cagniard, L., Reflection and Refraction of Prog. Seismic Waves New York, McGraw-Hill (1962).

    Google Scholar 

  15. Lamb, H. Phil Trans. Roy. Soc. (1904) A203 1.

    Google Scholar 

  16. Nowacki, W. Dynamic Problems of Thermoelasticity, Polish Scientific Publishers, Warszawa (1975).

    Google Scholar 

  17. Pekeris, C.L. Proc. Natn. Acad. Sci. (1955) 41 629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hurley, D.H., Spicer, J.B., Wagner, J.W., Murray, T.W. (1998). Modeling Heterogeneities and Elastic Anisotropy in Single Crystal Zinc and Carbon Fiber Epoxy Composites. In: Green, R.E. (eds) Nondestructive Characterization of Materials VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4847-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4847-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7198-4

  • Online ISBN: 978-1-4615-4847-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics