Skip to main content

Non-Invasive Sediment Monitoring Methods

Current and Future Tools for High-Resolution Climate Studies

  • Chapter
Reconstructing Ocean History

Abstract

Over the past three decades, great strides have been made toward real-time characterization of deep-sea sediments. Significant improvements in core quality and recovery related to the development of the DSDP hydraulic piston corer (HPC) and the DSDP/ODP advanced piston corer (APC) paved the way for the evolution of non- invasive measurement systems. Non-invasive techniques provide cost-effective use of otherwise expensive sea time, and leave sediments undisturbed for additional post-cruise study. These methods revolutionize our ability to characterize sediment properties. Suddenly, it has become possible to correlate at high resolution between geographically separated sites, and develop detailed proxies of physical, geochemical, and environmental processes. While previous generations of scientists were forced to extrapolate using low resolution data of variable quality, today we have a growing abundance of high-quality, closely-spaced, co-located measurements that can be applied in many ways. Data types now routinely available include: gamma-ray attenuation density, acoustic properties, magnetic susceptibility, natural gamma emissions, diffuse spectral reflectance and sediment resistivity. Non-invasive measurements allow shipboard scientists to document full recovery of sediment sequences recovered by drillship. This enables correlation among piston cores, mapping of downhole variability, development of detailed age models, and characterization of sediment mineralogy as well as physical and optical properties at centimeter to decimeter scale. Composite stratigraphic sections, created by matching variations in sediment properties from multiple holes at a given site, can be combined with age information to transform depth profiles into time series useful for spectral analyses. These composite sections are also useful for developing synthetic seismograms to integrate coring results with regionally extensive geophysical data. This suite of accomplishments make these methodologies among the tools of choice for characterizing sub- Milankovitch and Millennial-scale climatic variability.

Future objectives related to the evolution of these methods should focus on improved calibration and intercalibration protocols for existing systems and the deployment of innovative new measurement techniques. Many of the new techniques on the horizon will improve our ability to image sediment in two or three dimensions. Important advancements will include the deployment of a variety of digital cameras for archiving visual information, confocal laser macroscopes for studies of sediment microfabric, magnetic resonance imaging (MRI) techniques for estimating porosity in volume or cross sectional view, and a new generation of X-ray methods (Scanning XRF and CT-Scan) for elemental estimation and characterization of density variations related to ice-rafted debris (IRD), bioturbation and compositional changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, J.T., and Jennings, A.E., 1987. Influence of sediment source and type on the magnetic susceptibility of fjord and shelf deposits, Baffin Island and Baffin Bay, N. W.T. Can. J. Earth Sci., 24:1386–1401.

    Article  Google Scholar 

  • Andrews, J.T., MacLean, B., Kerwin, M., Manley, W., Jennings, A.E., and Hall, F., 1995. Final stages in the collapse of the Laurentide Ice Sheet, Hudson Strait, Canada, NWT: 14C AMS dates, seismic stratigraphy, and magnetic susceptibility logs. Quat. Sci. Rev., 14:983–1004.

    Article  Google Scholar 

  • Atkins, J.F., Boyle, E.A., Keigwin, L., and Cortijo, E., 1997. Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature, 390:154–156.

    Article  Google Scholar 

  • Attard, J.J., McDonald, P.J., Roberts S.P., and Taylor, T., 1994. Solid state NMR imaging of irreducible water in reservoir cores for spatially resolved pore surface relaxation estimation, Mag. Res. Imag., 12:355–359.

    Article  Google Scholar 

  • Balcom, B.J., MacGregor, R.P., Beyea, S.D., Green, D.P., Armstrong, R.L., and Bremner, T.W., 1996. Single-point ramped imaging with T1 enhancement (SPRITE), J. Mag. Reson., A123:131–134.

    Article  Google Scholar 

  • Balsam, W.L., and Deaton, B.C., 1991. Sediment dispersal in the Atlantic Ocean: Evaluation by visible light spectra, Reviews in Aquatic Sciences, 4:411–447.

    Google Scholar 

  • Balsam, W.L., Damuth, J.E., and Schneider, R.R., 1997. Comparison of shipboard vs. shore-based spectral data from Amazon fan cores: Implications for interpreting sediment composition, In Flood, R.D., Piper, D.J.W., Klaus, A., and Peterson, L.C., (Eds.), Proc. ODP, Sci. Repts, 155: College Station, TX (Ocean Drilling Program), 1–23.

    Google Scholar 

  • Bassinot, F.C., Labeyrie, L.D., Vincent, E., Qidelleur, X., Shackleton, N.J., and Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126:91–108.

    Article  Google Scholar 

  • Bates, C.C., Gaskell, T.F., and Rice, R.B., 1982. Geophysics in the Affairs of Man: A Personalized History of Exploration Geophysics and Its Allied Sciences of Seismology and Oceanography. New York (Perga-mon Press), 492 pp.

    Google Scholar 

  • Behl, R.J., Morris, R.M., and Kennett, J.P., 1997. (ABSTRACT) Late Quaternary Paleoxygenation of the Central California Margin, ODP Site 1017, as Shown by CT-Scans, EOS Transaction AGU, 78, 1997 Fall Meeting Supplement, F369.

    Google Scholar 

  • Bennett, R.H., Bryant, W.R., and Hulbert, M.H., 1990. Microstructure of Fine-Grained Sediments: From Mud to Shale. New York (Springer-Verlag).

    Google Scholar 

  • Bennett, R.H., Bryant, W.R., and Keller, G.H., 1981. Clay fabric of selected submarine sediments: Fundamental properties and models. J. Sedimentary Petrology, 51:217–232.

    Google Scholar 

  • Bernhard, R.K., and Chasek, M., 1955. Soil density determination by direct transmission gamma-rays, American Society for Testing Materials, Proceedings, 55:1199–1223.

    Google Scholar 

  • Bloemendal, J., 1983. Paleoenvironmental implications of the magnetic characteristics of sediments from Deep-Sea Drilling Project Site 514, Southeast Argentine Basin, In Ludwig, W. J., Krasheninnikov, V.A., et al., Initial Reports of the Deep-Sea Drilling Project, 71, Washington (U.S. Government Printing Office), 1097–1108.

    Google Scholar 

  • Bloemendal, J., Lamb, B., and King, J., 1988. Paleoenvironmental implications of rock-magnetic properties of late Quaternary sediment cores from the eastern equatorial Atlantic. Paleoceanography, 3:61–87.

    Article  Google Scholar 

  • Bloemendal, J., and deMenocal, P., 1989. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature, 342:897–900.

    Article  Google Scholar 

  • Bloemendal, J., King, J.W., Hall, F.R., and Doh, S.-J., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. J. Geophys. Res., 97:4361–4375.

    Article  Google Scholar 

  • Bloemendal, J., King, J.W., Hunt, A., deMenocal, P.B., and Hayashida, A., 1993. Origin of the sedimentary magnetic record at Ocean Drilling Program sites on the Owen Ridge, Western Arabian Sea. J. Geophys. Res., 98:4199–4219.

    Article  Google Scholar 

  • Bloomer, S.F., Mayer, L.A., and Moore, T.C., Jr., 1995. Seismic stratigraphy of the Eastern Equatorial Pacific Ocean: Paleoceanographic Implications. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 537–553.

    Google Scholar 

  • Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365:143–147.

    Article  Google Scholar 

  • Bond, G., Broecker, W., Lotti, R., and McManus, J., 1992. Abrupt color changes in isotope stage 5 in North Atlantic deep sea cores: Implications for rapid change of climate-driven events. In Kukla, G.J., and Went, E. (Eds.), Start of a Glacial. NATO ASI Series, 13:185–205, Springer-Verlag, Berlin.

    Google Scholar 

  • Bond, G.C., and Lotti, R., 1995. Iceberg discharges into the North Atlantic on millenial time scales during the last glaciation. Science, 267:1005–1010.

    Article  Google Scholar 

  • Boyce, R.E., 1968. Electrical resistivity of modern marine sediments from the Bering Sea., J. Geophys. Res., 73:4759–4766.

    Article  Google Scholar 

  • Boyce, R.E., 1973. Appendix I., Physical Properties Methods, In Edgar, N.T., Saunders, J.B. et al., Initial Reports of the Deep Sea Drilling Project, Volume 15: Washington (U.S. Government Printing Office), 1115–1128.

    Google Scholar 

  • Boyce, R.E., 1976. Appendix I: definitions and laboratory techniques of compressional sound velocity parameters and we-water content, wet-bulk density, and porosity parameters by gravimetric and gamma-ray attenuation techniques, In Schlanger, S. O., Jackson, E.D., et al., Initial Reports of the Deep Sea Drilling Project, Volume 33: Washington (U.S. Government Printing Office), 931–958.

    Google Scholar 

  • Boyle, E.A., 1997. Characteristics of the deep ocean carbon system during the past 150,000 years: SCO2 distributions, deep water flow patterns, and abrupt climate change, Proc. Nat. Acad. Sci, U.S.A., 94:8300–8307.

    Article  Google Scholar 

  • Breitzke, M., and Speiß, V., 1993. An automated full waveform logging system for high-resolution P-wave profiles in marine sediments, Marine Geophysical Researches, 15:297–321.

    Article  Google Scholar 

  • Breitzke, M., Grobe, H., Kuhn, G., and Muller, P., 1996. Full waveform ultrasonic transmission seismograms: A fast new method for the determination of physical and sedimentological parameters of marine sediment cores, JGR, 101:22123–22141.

    Article  Google Scholar 

  • Brier C., Bennin, R., and Rona, P.A., 1969. Preliminary evaluation of a core scintillation counter for bulk density measurement in marine sediment cores, Journal of Sedimentary Petrology, 39:1509–1519.

    Google Scholar 

  • Bryant, W.R., and Bennett, R.H., 1988. Origin, physical, and mineralogical nature of red clays: The Pacific Ocean Basin as a model. Geo-Marine Letters (special issue), 8:189–249.

    Google Scholar 

  • Bryant, W.R., Bennett, R.H., and Katherman, C.E., 1981. Shear strength, consolidation, porosity, and permeability of oceanic sediments. In Emiliani, C. (Ed.), The Oceanic Lithosphere; The Sea, v. 7, New York (John Wiley and Sons), 1555–1661.

    Google Scholar 

  • Bryant, W.R., Deflache, A.P., and Trabant, P.K., 1974. Consolidation of marine clays and carbonates. In Inder-bitzen, A.L., Deep-Sea Sediments: Physical and Mechanical Properties. New York (Plenum Press), 209–244.

    Google Scholar 

  • Buckley, D.E., MacKinnon, W.G., Cranston, R.E., and Christian, H.A., 1994. Problems with piston core sampling: Mechanical and geochemical diagnosis. Marine Geol., 117:95–106.

    Article  Google Scholar 

  • Busch, W.H., and Keller, G.H., 1982. Consolidation characteristics of sediments from the Peru-Chile continental margin and implications for past sediment instability. Marine Geology, 45:17–39.

    Article  Google Scholar 

  • Caldwell, J.M., 1960. Development and tests of a radioactive sediment density probe, Beach Erosion Board, Corps of Engineers, Tech. Memorandum, 121, 29 pp. and 22 pp., Appendices.

    Google Scholar 

  • Channell, J.E.T., Hodell, D.A., McManus, J., and Lehman, B., 1998. Orbital modulation of the Earth’s magnetic field intensity. Nature, 394:464–468.

    Article  Google Scholar 

  • Chapman, M.R., and Shackleton, N.J., 1998. What level of resolution is attainable in a deep-sea core? Results of a spectrophotometer study, Paleoceanography, 13:311–315.

    Article  Google Scholar 

  • Chi, Jian, and Mienert, J., 1996. Linking physical property records of Quaternary sediments to Heinrich events, Marine Geology, 131:57–73.

    Article  Google Scholar 

  • Cortijo, E., Yiou, P., Labeyrie, L., and Cremer, M., 1995. Sedimentary record of rapid climate variability in the North Atlantic Ocean during the last glacial cycle. Paleoceanogr., 10(5):911–926.

    Article  Google Scholar 

  • Courtney, R.C., and Mayer, L.A., 1993. Calculating acoustic parameters by a filter correlation method. J. Acoust. Soc. Am., 93:1145–1154.

    Article  Google Scholar 

  • Davie, J.R., Fenske, C.W., and Serocki, S.T., 1978. Geotechnical properties of deep continental margin soils. Marine Geotechnol., 3:85–119.

    Article  Google Scholar 

  • Davies, S., Hardwick, A., Roberts, D., Spowage, K., and Packer, K.J., 1994. Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging, Mag. Res. Imag., 12:349–353.

    Article  Google Scholar 

  • Deaton, B.C., and Balsam, W.L., 1991. Visible spectroscopy: A rapid method for determining hematite and goethite concentrations in geological material, J. Sediment. Petrol., 61:628–632.

    Google Scholar 

  • Deep Sea Drilling Project, 1984. Design and operation of an advanced hydraulic piston corer. IPOD/DSDP Development Engineering Technical Report No. 21, 269 pp.

    Google Scholar 

  • Demars, K.R., and Nacci, V.A., 1978. Significance of Deep Sea Drilling Project sediment physical property data. Marine Geotechnology, 3:151–170.

    Article  Google Scholar 

  • DeMenocal, P.B., Bristow, J.F., and Stein, R., 1992. Paleoclimatic applications of downhole logs: Pliocene-Pleistocene results from Hole 798B, Sea of Japan. In Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., and Barren, J. (Eds.), Proc. ODP, Sci. Results, 127/128, Pt. 1: College Station, TX (Ocean Drilling Program), 393–407.

    Google Scholar 

  • Dettinger, M.D., Ghil, M., Strong, C.M., Weibel, W., and Yiou, P., 1995. Software expedites singular-spectrum analysis of noisy time series, Eos, Trans. American Geophysical Union, v. 76(2), p. 12, 14, 21.

    Google Scholar 

  • Ding, Z., Rutter, N.W., and Liu, T.S., 1994. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews, 13:39–70.

    Article  Google Scholar 

  • Dixon, A.E., Damaskinos, S., Ribes, A., and Beesley, K.M., 1995. A new confocal scanning beam laser MACROscope using a telecentric, f-theta laser scan lens. J. Microscopy, 178:261–266.

    Article  Google Scholar 

  • Doh, S.-J., King, J.W., and Leinen, M., 1988. A rock magnetic study of giant piston core LL44-GPC3 from the central North Pacific and its paleoceanographic implications. Paleoceanogr., 3(1):89–111.

    Article  Google Scholar 

  • Dowdeswell, J.A., Maslin, M.A., Andrews, J.T., and McCave, I.N., 1995. Iceberg production, debris rafting, and the extent and thickness of Heinrich layers (H-1, H-2) in North Atlantic sediments. Geology, 23:301–304.

    Article  Google Scholar 

  • Driscoll, N.W., and Haug, G.H., 1998. A short circuit in thermohaline circulation: A cause for Northern Hemisphere glaciation? Science, 282:436–446.

    Article  Google Scholar 

  • Einsele, G., and Kelts, K., 1982. Pliocene and Quaternary mud turbidites in the Gulf of California: Sedimentology, mass physical properties, and significance. In Curray, J.R., Moore, D.G., et al., Init. Repts, DSDP, 64: Washington (U.S. Govt. Printing Office), 511–542.

    Google Scholar 

  • Evans, H.B., 1965. GRAPE—A device for continuous determination of material density and porosity. Proceedings of 6th Annual SPWLA Logging Symposium. 2. Dallas, TX. pp. B1–B25.

    Google Scholar 

  • Evans, H.B., and Lucia, J.A., 1970. Natural Gamma radiation scanner, In Peterson, M. N. A., Degar, N.T. et al., Init Repts. DSDP, 2: Washington (US Govt. Printing Office), 458–460.

    Google Scholar 

  • Gerland, S., and Villinger, H., 1995. Nondestructive density determination on marine sediment cores from gamma-ray attenuation measurements, Geo-Marine Letters, 15:111–118.

    Article  Google Scholar 

  • Goldberg, D., 1997. The role of downhole measurements in marine geology and geophysics. Rev. Geophys., 35:315–342.

    Article  Google Scholar 

  • Goldberg, D., Wilkens, R.H., and Moos, D., 1987. Seismic modeling of diagenetic effects in Cenozoic marine sediments at Deep Sea Drilling Project Sites 612 and 613. In Poag, C.W., Watts, A.B., et al., Init. Repts. DSDP, 95:Washington (U.S. Govt. Printing Office), 589–599.

    Google Scholar 

  • Gorsline, D.S., 1980. Deep-water sedimentologic conditions and models. Mar. Geol., 38:1–21.

    Article  Google Scholar 

  • Grousset, F.E., Labeyrie, L., Sinko, J.A., Cremer, M., Bond, G., Duprat, J., Cortijo, E., and Huon, S., 1993. Patterns of ice-rafted detritus in the Glacial North Atlantic (40°-55°N), Paleoceanography, 8:175–192.

    Article  Google Scholar 

  • Gunn, D.E., and Best, A.I., 1998. A new automated nondestructive system for high resolution multi-sensor core logging of open sediment cores, Geo-Marine Letter, 18:70–77.

    Article  Google Scholar 

  • Hagelberg, T.K., Bond, G., and de Menocal, P., 1994. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene, Paleoceanography, 9:545–558.

    Article  Google Scholar 

  • Hagelberg, T.K., Pisias, N.G., Shackleton, N.J., Mix, A.C., and Harris, S., 1995. Refinement of a high-resolution, continuous sedimentary section for studying equatorial Pacific Ocean paleoceanography, Leg 138. In Pisias, N.G., Mayer, L.A., Janecek, T.J., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 31–46.

    Google Scholar 

  • Hagelberg, T.K., Shackleton, N.J., Pisias, N., and Shipboard Scientific Party, 1992. Development of composite depth sections for Sites 844 through 854. In Mayer, L., Pisias, N, Janecek, T., et al., Proc. ODP, Init. Repts., 138: College Station, TX (Ocean Drilling Program), 79–85.

    Google Scholar 

  • Hall, F.R., and Reed, S.J., 1996. Rock (mineral)-magnetic properties of post-glacial (16-0.5 ka) sediments from the Emerald Basin (Scotian Shelf), Canada. In Andrews, J.T., Austin, W.E.N., Bergsten, H., and Jennings, A.E., Late Quaternary Paleoceanography of the North Atlantic Margins, London, Geol. Soc. Spec. Publ., 111:103–115.

    Google Scholar 

  • Hamilton, E.L., 1964. Consolidation characteristics and related properties of sediments from experimental Mohole (Guadalupe Site). J. Geophys. Res., 69:4257–4269.

    Article  Google Scholar 

  • Hamilton, E.L., 1976. Variations of density and porosity with depth in deep-sea sediments. J. Sediment. Petrol., 46:280–300.

    Google Scholar 

  • Hamilton, E.L., 1979. Sound velocity gradients in marine sediments. J. Acoustic Society of America, 65:909–922.

    Article  Google Scholar 

  • Hamilton, E.L., 1980. Geoacoustic modeling of the sea floor. J. Acoustic Society of America, 68:1313–1340.

    Article  Google Scholar 

  • Hamilton, E.L., and Bachman, R.T., 1982. Sound velocity and related properties of marine sediments. J. Acoustic Society of America, 72:1890–1903.

    Google Scholar 

  • Harris S.E., and Mix, A.C., 1999. Pleistocene precipitation balance in the Amazon Basin recorded in deep sea sediments, Quaternary Research, 51:14–26.

    Article  Google Scholar 

  • Harris, S.E., Mix, A.C., and King, T., 1997. Biogenic and terrigenous sedimentation at Ceara Rise, western tropical Atlantic, supports pliocene-pleistocene deep-water linkage between hemispheres, In Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J., (Eds.) Proc. ODP, Sci. Repts, 154: College Station, TX (Ocean Drilling Program), 331–348.

    Google Scholar 

  • Haug, G.H., Maslin, M.A., Sarnthein, M., Stax, R., and Tiedemann, R., 1995. Evolution of Northwest Pacific sedimentation patterns since 6 Ma (Site 882). In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 293–314.

    Google Scholar 

  • Hay, W.W., 1988. Paleoceanography: A review for the GSA Centennial. Geological Society of America Bulletin, 100:1934–1956.

    Article  Google Scholar 

  • Heller, F., and Evans, M.E., 1995. Loess magnetism. Reviews of Geophysics, 33:211–240.

    Article  Google Scholar 

  • Heller, F., and Liu, T.S., 1986. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophys. Res. Letts., 13:1169–1172.

    Article  Google Scholar 

  • Herbert, T.D., and Mayer, L.D., 1991. Long climatic time series from sediment physical properties measurements. J. Sediment. Petrol., 61:1089–1108.

    Google Scholar 

  • Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Wu, G., 1994. Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last ∼200 ka. Can. J. Earth Sci., 31:63–89.

    Article  Google Scholar 

  • Hoppie B.W., Blum, P., and the Shipboard Scientific Party, 1994. Natural gamma-ray measurements of ODP cores: introduction to procedures with examples from Leg 150, In Mountain, G.S., Miller, K.G., Blum, P., et al., Proc. ODP, Init. Repts., 150: College Station, TX (Ocean Drilling Program), 51–59.

    Google Scholar 

  • Howard, J.J., and Kenyon, W.E., 1992. Determination of pore size distribution in sedimentary rocks by proton nuclear magnetic resonance, Mar. Petrol. Geol., 9:139–145.

    Article  Google Scholar 

  • Hughen, K.A., Overpeck, J.T., Peterson, L.C., and Trumbore, S., 1996. Rapid climatic changes in the tropical Atlantic region during the last deglaciation. Nature, 380:51–54.

    Article  Google Scholar 

  • Ingelman, K.R., and Hamilton, E.L., 1963. Bulk densities of mineral grains from Mohole samples (Guadalupe Site). J. Sediment. Petrol., 33:474–478.

    Google Scholar 

  • Jansen, J.H.F., Van der Gaast, S.J., Koster, B., and Vaars, A.J., 1998. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores, Marine Geology, 151:143–153.

    Article  Google Scholar 

  • Kampf, N., and Schwertmann, U., 1983. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils, Geoderma, 29:27–39.

    Article  Google Scholar 

  • Keller, G.H, 1964. Deep-sea Nuclear sediment density probe, Deep-Sea Research, 12:373–376.

    Google Scholar 

  • Keller, G.H., Lambert, D.N., and Bennett, R.H., 1979. Geotechnical properties of continental slope deposits— Cape Hatteras to Hydrographic Canyon. In Doyle, L.J., and Pilkey, O.H., (Eds.), Geology of Continental Slopes, SEPM Special Publ. No., 27:131–151.

    Google Scholar 

  • Kelts, K., and Niemitz, J., 1992. Preliminary sedimentology of late Quaternary diatomaceous muds from Deep Sea Drilling Project Site 480, Guaymas Basin slope, Gulf of California. In Curray, J.R., Moore, D.G., et al., Init. Repts, DSDP, 64: Washington (U.S. Govt. Printing Office), 1191–1210.

    Google Scholar 

  • King, J.W., and Channeil, J.E.T., 1991. Sedimentary magnetism, environmental magnetism, and magnetostratigraphy. U.S. National Report, International Union on Geodesy and Geopysics, 1987–1990. Rev. Geophysics, 29:358–370.

    Google Scholar 

  • Kukla, G., An, Z.S., Melice, J.L., Gavin, J., and Xia, J.L., 1990. Magnetic susceptibility record of Chinese loess. Transactions of the Royal Society of Edinburgh: Earth Sciences, 81:263–288.

    Article  Google Scholar 

  • Lavoie, D.L., and Bryant, W.R., 1993. Permeability characteristics of continental slope and deep-water carbonates from a microfabric perspective. In Rezak, R., and Lavoie, D.L. (Eds.), Carbonate Microfabrics. New York (Springer-verlag), 117–128.

    Google Scholar 

  • Lyle, M., Mayer, L., Pisias, N., Hagelburg, T., Dadey, K., Bloomer, S., and the Shipboard Scientific Party of Leg 138. 1992. Downhole logging as a paleoceanographic tool on Ocean Drilling Program Leg 138: Interface between high-resolution stratigraphy and regional synthesis. Paleoceanography, 7:691–700.

    Article  Google Scholar 

  • MacKillop, A.K., Moran, K., Jarrett, K., Farrell., J., and Murray, D., 1995. Consolidation properties of equatorial Pacific Ocean sediments and their relationship to stress history and offsets in the Leg 138 composite depth sections. In Pisias, N.G., Mayer, L.A., Janecek, T.J., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 357–369.

    Google Scholar 

  • Manley, W.F., MacLean, B., Kerwin, M.W., and Andrews, J.T., 1993. Magnetic susceptibility as a Quaternary correlation tool: examples from Hudson Strait sediment cores, eastern Canadian Arctic. In Current Research, Part D, Geol. Surv. Canada, Paper 93–1D:137-145.

    Google Scholar 

  • Mansfield, P., and Issa, B., 1994. Studies of fluid transport in porous rocks by echo-planar MRI, Mag. Res. Imag., 12:275–278.

    Article  Google Scholar 

  • Mansfield, P., and B. Issa, 1996. Fluid transport in porous rocks, I. EPI studies and a stochastic model of flow, J. Mag. Reson., A122:137–148.

    Google Scholar 

  • Marine Geotechnical Consortium, 1986. Geotechnical properties of Northwest Pacific pelagic clays: Deep Sea Drilling Project Leg 86, Hole 576A. In Heath, GR., Burckle, L.H., et al., Init. Repts., DSDP, 86: Washington (U.S. Govt. Drilling Project), 723–758.

    Google Scholar 

  • Maslin, M.A., Haug, G.H., Sarnthein, M., Tiedemann, R., Erlenkeuser, H., and Stax, R., 1995. Northwest Pacific Site 882: The initiation of Northern Hemisphere glaciation. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 315–329.

    Google Scholar 

  • Mayer, L.A., 1979a. Deep-sea carbonates: Acoustic, physical, and stratigraphic properties. J. Sediment. Petrol., 49:819–836.

    Google Scholar 

  • Mayer, L.A., 1979b. The origin of fine scale acoustic stratigraphy in deep-sea carbonates. J. Geophys. Res., 84:6177–6184.

    Article  Google Scholar 

  • Mayer, L.A., 1980. Deep-sea carbonates: Physical property relationships and the origin of high-frequency acoustic reflectors. Marine Geol., 38:165–183.

    Article  Google Scholar 

  • Mayer, L.A., 1982. Physical properties of sediment recovered by Deep Sea Drilling Project Leg 68 with the Hydraulic Piston Corer. In Prell, W.L., and Gardner, J.V., et al., Init. Repts. DSDP, 68: Washington (U.S. Govt. Printing Office), 365–382.

    Google Scholar 

  • Mayer, L.A., 1991. Extraction of high-resolution carbonate data for paleoclimatic reconstruction. Nature, 352:148–150.

    Article  Google Scholar 

  • Mayer, L.A., Gobrecht, C., and Pisias, N.G., 1996. Three-dimensional visualization of orbital forcing and climate response: Interactively exploring the pacemaker of the ice ages.

    Google Scholar 

  • Mayer, L.A., Jansen, E., Backman, J., and Takayama, T., 1993. Climatic cyclicity at Site 806: The GRAPE record. In Berger, W.H., Kroenke, L.W., and Mayer, L.A. (Eds.), Proc. ODP, Sci. Results, 130: College Station, TX (Ocean Drilling Program), 623–639.

    Google Scholar 

  • Mayer, L.A., Shipley, T.H., and Winterer, E.L., 1986. Equatorial Pacific seismic reflectors as indicators of global oceanographic events. Science, 233:761–764.

    Article  Google Scholar 

  • Mayer, L.A., Shipley, T.H., Theyer, F., Wilkens, R.H., and Winterer, E.L., 1985. Seismic modeling and paleoceanography at Deep Sea Drilling Project Site 574. In Mayer, L.A., Theyer, F. et al., Init. Repts. DSDP, 85:Washington (U.S. Govt. Printing Office), 947–970.

    Google Scholar 

  • McCave, I.N., Manighetti, B., and Robinson, S.G., 1995. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and paleoceanography. Paleoceanogr., 10(3):593–610.

    Article  Google Scholar 

  • McCoy, F.W., 1985. Mid-core flow-in: Implications for stretched stratigraphic sections in piston cores. J. Sediment. Petrol., 55:608–610.

    Google Scholar 

  • McManus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., and Higgins, S., 1994. High-resolution climate records from the North Atlantic during the last interglacial, Nature, 371:326–329.

    Article  Google Scholar 

  • Meinert, J., and Bloemendal, J., 1989. A comparison of acoustic and rock-magnetic properties of equatorial Atlantic deep-sea sediments: Paleoceanographic implications. Earth Planet. Sci. Letts., 94:291–300.

    Article  Google Scholar 

  • Meynadier, L., Valet, J.-P., and Shackleton, N.J., 1995. Relative geomagnetic intensity during the last 4 M.Y. from the Equatorial Pacific. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 779–795.

    Google Scholar 

  • Mix, A.C, Harris, S.E., and Janecek, T.R., 1995. Estimating lithology from nonintrusive reflectance spectra: Leg 138, In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H., (Eds.), Proc. ODP, Sci. Repts, 138: College Station, TX (Ocean Drilling Program), 413–427.

    Google Scholar 

  • Mix, A.C., Rugh, W., Pisias, N.G., and Veirs, S., Leg 138 Shipboard sedimentologists, and the leg 138 Scientific Party, 1992. Color reflectance spectroscopy: a tool for rapid characterization of deep-sea sediments. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H., (Eds.), Proc. ODP, Init. Repts, 138: College Station, TX (Ocean Drilling Program), 67–77.

    Google Scholar 

  • Moran, K., 1993. Notice to users of GRAPE data, JOIDES J., 19(3), 6.

    Google Scholar 

  • Moros, M., Endler, R., Lackschewitz, K.S., Wallrabe-Adams, H.-J., Mienert, J., and Lemke, W., 1997. Physical properties of Reykjanes Ridge sediments and their linkage to high-resolution Greenland Ice Sheet Project 2 ice core data, Paleoceanography, 12:687–695, 1997.

    Article  Google Scholar 

  • Morris, R.M., and Behl, Rard J., 1998. (ABSTRACT), X-ray computed tomography reveals correlation between bioturbated continental slope sediments and global climatic fluctuation, American Association of Petroleum Geologists Annual Meeting Expanded Abstracts (May 17–20), American Association of Petroleum Geologists, v. 1998, Tulsa, OK.

    Google Scholar 

  • Ogushwitz, P.R., 1985a. Applicability of the Biot theory. I. Low-porosity materials. J. Acoust. Soc. Am., 77:429–440.

    Article  Google Scholar 

  • Ogushwitz, P.R., 1985b. Applicability of the Biot theory. II. Suspensions. J. Acoust. Soc. Am., 77:441–452.

    Article  Google Scholar 

  • Ogushwitz, P.R., 1985c. Applicability of the Biot theory. III. Wave speeds versus depth in marine sediments. J. Acoust. Soc. Am., 77:453–463.

    Article  Google Scholar 

  • Oldfield, F., 1991. Environmental magnetism—A personal perspective. Quaternary Science Reviews, 10:73–85.

    Article  Google Scholar 

  • Ortiz, J.D. Mix, A., Harris, S., and O’Connell, S., 1999. Diffuse spectral reflectance as a proxy for percent carbonate content in North Atlantic sediments, Paleoceanography, 14:171–186.

    Article  Google Scholar 

  • Paillard, D., Labeyrie L., and Yiou P., 1996. Macintosh program performs time-series analysis, Eos Trans. AGU, 77, 379. (Note: this free software is available online at URL:http://www.agu.org/eoselec/96097e.html)

    Google Scholar 

  • Paulus, F.J., 1972. Leg 11 measurements of physical properties in sediments of the western North Atlantic and their relationship to sediment consolidation, in Hollister, C.D., Ewing, J.I, et al., Init. Repts, DSDP 11: Washington, (U.S. Govt. Printing office), 667–722.

    Google Scholar 

  • Pisias, N.G., Mayer, L.A., and Mix, A.C., 1995. Paleoceanography of the Eastern Equatorial Pacific during the Neogene: Synthesis of Leg 138 Drilling Results. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 5–21.

    Google Scholar 

  • Pointecorvo, B., 1941. Neutron well-logging, Oil and Gas Journal, 40:32–33.

    Google Scholar 

  • Prell, W.L., and Gardner, J.V., et al., Init. Repts. DSDP, 68: Washington (U.S. Govt. Printing Office), 495 pp.

    Google Scholar 

  • Preiss, K., 1968. Non-destructive laboratory measurement of marine sediment density in a core barrel using gamma radiation. Deep-Sea Research, 15:401–407.

    Google Scholar 

  • Pudsey, C.J., and Howe, J.A., 1998. Quaternary history of the antarctic Circumpolar Current: evidence from the Scotia Sea, Mar. Geology, 148:83–112.

    Google Scholar 

  • Rack, F.R., 1997. (ABSTRACT) Geotechnical stratigraphy of the Nordic Seas: Implications for paleoceanography. Development of Paleoceanography as a New Field of Science. Meeting Commemorating the 50th Anniversary of the Swedish Deep Sea Expedition. August 18–21, The Royal Swedish Academy of Sciences, Stockholm, Sweden, p. 87.

    Google Scholar 

  • Rack, F., 1998. Tomorrow’s Technology Today, Interim report of the IMAGES standing committee on “New Technologies in Sediment Imaging”, (http://www.joi-odp.org/T3_report/T3_report.html).

  • Rack, F.R., Balcom, B.J., MacGregor, R.P., and Armstrong, R.L., 1998a. Magnetic resonance imaging of the Lake Agassiz-Lake Winnipeg transition, J. Paleolimnology, 19:255–264.

    Article  Google Scholar 

  • Rack, F.R., Bloemendal, J., Wolf-Welling, T.C.W., O’Connell, S., Cremer, M., Winkler, A., Thiede, J., Black, K., and Hood, J., 1996a. Development of physical properties relationships, interhole composite depth profiles, and sedimentologic ground truthing of multi-sensor core measurements: A synthesis of results. In Thiede, J., Myhre, A., Firth, J., et al., Proc. ODP, Sci. Results, 151: College Station, TX (Ocean Drilling Program), p. 595–626.

    Google Scholar 

  • Rack, F.R., Bryant, W.R., and Julson, A.P., 1993. Microfabric and physical properties of deep-sea high latitude carbonate oozes. In Rezak, R., and Lavoie, D.L. (Eds.), Carbonate Microfabrics. New York (Springer-verlag), 129–147.

    Google Scholar 

  • Rack, F., Mayer, L., Jarrett, K., Piper, D., Moran, K., Bilodeau, G., de Vernal, A., Hillaire Marcel, C., Hiscott, R., and Aksu, A., 1996b. (ABSTRACT) Investigations of MD-101 cores from the continental margin of eastern Canada: Initial results from the IMAGES Program. Am. Geophys. Union Fall Meeting, December 15–19, San Francisco, CA, EOS Transactions, Vol. 77(46):F21.

    Google Scholar 

  • Rack, F.R., and Pittenger, A., 1992. Geotechnical stratigraphy of Neogene sediments: Maud Rise and Kergulen Plateau. In Kennett, J.P., and Warnke, D.A. (Eds.), The Antarctic Paleoenvironment: A Perspective on Global Change. Antarctic Research Series, v. 56, Washington (American Geophysical Union), 203–230.

    Google Scholar 

  • Rack, F.R., Ribes, A.C., Tsintzouras, G., Marshall, G., Damaskinos, S., and Dixon, A.E., 1998b. (ABSTRACT) Preliminary results from biomedical imaging of lake and ocean sediments. Proc. Sixth International Conference on Paleoceanography, August 24–28, 1998 (Lisbon, Portugal), p. 189.

    Google Scholar 

  • Ribes, A.C., Marshall, G., Tsintzouras, G., Damaskinos, S., Dixon, A.E., and Rack, F., 1998. (ABSTRACT) The Confocal Scanning Beam MACROscope/Microscope Applied to Iaging Ocean/Lake Core Geological Specimens. Canadian Association of Physicists (CAP) Annual Meeting, June 15, 1998 (Waterloo, Ont.), Physics in Canada, 54(3):10.

    Google Scholar 

  • Richards, A.F., Hirst, T.J., and Parks, J.M., 1974. Bulk density—water content relationships in marine silts and clays. J. Sedimentary Petrology, 44:1004–1009.

    Google Scholar 

  • Röhl, U, and L.J. Abrams, L.J., 1998. High-resolution downhole and non-destructive core measurements from Sites 999 and 1001 in the Caribbean Sea: application to the late Paleocene thermal maximum, (submitted to Proc. ODP, Sci. res., Vol. 165).

    Google Scholar 

  • Robinson, S.G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. Inter., 42:22–47.

    Article  Google Scholar 

  • Robinson, S.G., 1993. Lithostratigraphic applications for magnetic susceptibility logging of deep-sea sediment cores: examples from ODP Leg 115, In Hailwood, E.A., and Kidd, R.B. (Eds.), High resolution stratigraphy, 70, Geological Society: London, pp. 65–98.

    Google Scholar 

  • Robinson, S.G., and McCave, I.N., 1994. Orbital forcing of bottom-current enhanced sedimentation on Feni Drift, NE Atlantic, during the mid-Pleistocene. Paleoceanogr., 9(6):943–972.

    Article  Google Scholar 

  • Robinson, S.G., Maslin, M.A., and McCave, I.N., 1995. Magnetic susceptibility variability in Upper Pleistocene deep-sea sediments of the NE Atlantic: Implications for ice rafting and paleocirculation at the last glacial maximum, Paleoceanography, 10:221–250.

    Article  Google Scholar 

  • Ruddiman, W.F., Cameron, D., and Clement, B.M., 1987. Sediment disturbance and correlation of offset holes drilled with the Hydraulic Piston Corer Leg 94. In Ruddiman, W.F., Kidd, R.B., Thomas, E. et al., Init. Repts. DSDP, 94: Washington (U.S. Govt. Printing Office), 615–634.

    Google Scholar 

  • Rutter, N.W., Ding, Z.L., and Liu, T.S., 1996. Long paleoclimatic records from China. Geophysica, 32:7–34.

    Google Scholar 

  • Schlanger, S.O., and Douglas, R.G., 1974. The pelagic ooze-chalk-limestone transition and its implications for marine stratigraphy. In Hsu, K.J., and Jenkyns, H.C. (Eds), Pelagic Sediments on Land and Under the Sea. International Association of Sedimentologists Spec. Publ., 1:117–148.

    Google Scholar 

  • Schreiber, B.C., 1968. Sound velocity in deep sea sediments. J. Geophys. Res., 73:1259–1268.

    Article  Google Scholar 

  • Schultheis, P.J., and McPhail, S.D., 1989. An automated P-wave Logger for recording Fine-Scale Compressional Wave Velocity Structures in Sediments, In Ruddiman, W., Sarnthein, M., et al., Proc. ODP, Sci. Results, 108, College Station TX (Ocean Drilling Environmental MagnetismProgram), 407–413.

    Google Scholar 

  • Schultheiss, P.J., and Weaver, P.P.E., 1992. Multi-sensor core logging for science and industry, In Proceedings Ocean 92, Mastering the Ocean Sciences Through Technology, 2:608–613.

    Article  Google Scholar 

  • Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., and Schneider, D.A., 1995. A new late Neogene time scale: Application to Leg 138 sites. In Pisias, N.G., Mayer, L.A., Janecek, T.J., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 73–101.

    Google Scholar 

  • Shephard, L.E., and Bryant, W.R., 1983. Geotechnical properties of lower trench inner-slope sediments. Tectonophysics, 99:279–312.

    Article  Google Scholar 

  • Simons, F.J, Verhelst, F., and Swennen, R., 1997. Quantitative characterization of coal by means of microfocal X-Ray computed microtomography (CMT) and color image analysis (CIA), Int. J. Coal Geology, 34:69–88.

    Article  Google Scholar 

  • Stoner, J.S., Channeil, J.E.T., and Hillaire-Marcel, C., 1995a. Magnetic properties of deep-sea sediments off southwest Greenland: Evidence for major differences between the last two deglaciations. Geology, 23(3):241–244.

    Article  Google Scholar 

  • Stoner, J.S., Channeil, J.E.T., and Hillaire-Marcel, C., 1995b. Late Pleistocene relative geomagnetic paleoin-tensity from the deep Labrador Sea: Regional and global correlations. Earth Planet. Sci. Letts., 134:237–252.

    Article  Google Scholar 

  • Stoner, J.S., Channell, J.E.T., and Hillaire-Marcel, C., 1996. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: Relationship to North Atlantic Heinrich layers. Paleoceanogr., 11(3):309–325.

    Article  Google Scholar 

  • Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C., and Mareschal, J.-C., 1994. High-resolution rock magnetic study of a Late Pleistocene core from the Labrador Sea. Can. J. Earth Sci., 31:104–114.

    Article  Google Scholar 

  • Storms, M.A., Nugent, W., and Cameron, D., 1983. Hydraulic piston coring—A new era in ocean research. In Design and Operation of the Hydraulic Piston Corer. IPOD/DSDP Development Engineering Technical Report No., 12:1–24.

    Google Scholar 

  • Thompson, R.J., Bloemendal, J., Dearing, J.A., Oldfield, F., Rummery, T.A., Stober, J.C., and Turner, G.M., 1980. Environmental applications of magnetic measurements. Science, 207:481–486.

    Article  Google Scholar 

  • Thompson, R., and Oldfield, F., 1986. Environmental Magnetism. Winchester, MA, Allen, and Unwin, 227 pp.

    Book  Google Scholar 

  • Thouveny, N., de Beaulieu, J.-L., Bonifay, E., Creer, K., Gulot, J., Icole, M., Johnsen, S., Jouzel, J., Reille, M., Williams, T., and Williamson, D., 1994. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature, 371:503–506.

    Article  Google Scholar 

  • Tiedemann, R., and Haug, G., 1995. Astronomical calibration of cycle stratigraphy for Site 882 in the Northwest Pacific. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 283–292.

    Google Scholar 

  • Timblin, L.O., 1957. Density measurement of saturated submersed sediments by gamma-ray scattering, U.S. Dept of Interior, Bureau of Reclamation, Chemical Engineering Laboratory, Rept., SI-11, 34 pp.

    Google Scholar 

  • Tittman, J.S., and Wahl, J.S., 1965. The physical foundation of formation density logging (gamma-gamma). Geophysics, 30:284–294.

    Article  Google Scholar 

  • Urmos, J., and Wilkens, R.H., 1993. In situ velocities in pelagic carbonates: New insights from Ocean Drilling Program Leg 130, Ontong Java Plateau. J. Geophys. Res., 98:7903–7920.

    Article  Google Scholar 

  • Vautard, R., Yiou, P., and Ghil, M., 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Physica D, 58:95–126.

    Google Scholar 

  • Verosub, K.L., and Roberts, A.P., 1995. Environmental magnetism: Past, present, and future. J. Geophys. Res., 100:2175–2192.

    Article  Google Scholar 

  • Wahl J.S., Tittmann, J., Johnstone, C.W., and Alger, R.P., 1964. The dual spacing formation density log, Journal of Pet. Tech., 16:1411–1416.

    Google Scholar 

  • Weaver, P.P.E., and Schultheiss, P.J., 1990. Current methods for obtaining, logging and splitting marine sediment cores. In Hailwood, E.A., and Kidd, R.B. (Eds.). Marine geological surveying and sampling. Kluwer, Dordrecht, pp. 85–101.

    Chapter  Google Scholar 

  • Weber, M.E., 1998. Estimation of biogenic carbonate and opal by continuous non-destructive measurements in deep-sea sediments: application to the eastern Equatorial Pacific, Deep-Sea Research 1, 45:1955–1975.

    Article  Google Scholar 

  • Weber, M.E., Messen, F., Kuhn, G., and Wiedicke, M., 1997. Calibration and application of marine sedimentary physical properties using a multi-sensors core logger, Marine Geology, 136:151–172.

    Article  Google Scholar 

  • Whitmarsh, R.B., 1971. Precise sediment density determination by gamma-ray attenuation alone, J. Sediment. Petrol., 71:882–883.

    Google Scholar 

  • Wilkens, R.H., Cheng, C.H., and Meredith, J.A., 1992. Evaluation and prediction of shear wave velocities in calcareous marine sediments and rocks. J. Geophys. Res., 97:9297–9305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ortiz, J.D., Rack, F.R. (1999). Non-Invasive Sediment Monitoring Methods. In: Abrantes, F., Mix, A.C. (eds) Reconstructing Ocean History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4197-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4197-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6883-0

  • Online ISBN: 978-1-4615-4197-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics