Skip to main content

Tannins in Woods and Their Contribution to Microbial Decay Prevention

  • Chapter
Plant Polyphenols

Part of the book series: Basic Life Sciences ((BLSC,volume 59))

Abstract

The chemical basis of wood durability, together with the nature, synthesis and localization of tannins in wood tissues are reviewed. Most durable woods, particularly those of angiosperms, are rich in tannins. The presence of tannins in durable woods may be explained partly by their toxicity to microorganisms resulting from some of their fundamental physico-chemical properties, but also by their high solubility in water which may be necessary for wood cells to accumulate such large amounts of low toxicity compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Loehle, C. Tree life history strategies; the role of defences. Can. J. For. Res. 18:209 (1988).

    Article  Google Scholar 

  2. Scheffer, T.C.; Cowling, E.B. Natural resistance of wood to microbial deterioration. Annu. Rev. Phytopathol. 4:147 (1966).

    Article  CAS  Google Scholar 

  3. Hillis, W.E. The distribution and formation of polyphenols within the tree. In: Hillis, W.E. (ed.) Wood extractives and their significance to the pulp and paper industries. Academic Press, New York p. 59–131 (1962).

    Google Scholar 

  4. Bamber, R.K.; Fukazawa, K. Sapwood and heartwood: a review. For. Prod. Absir. 8:265 (1985).

    Google Scholar 

  5. Fengel, D.; Wegener, G. Wood, chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin (1984).

    Google Scholar 

  6. Anderson, A.B.; Scheffer, T.C.; Duncan, C.G. The chemistry of decay resistance and its decrease with heartwood aging in incense cedar (Libocedrus decurrens Torrey). Holzforschung 17:1 (1963).

    Article  CAS  Google Scholar 

  7. Anderson, A.B. The influence of extractives on tree properties. I. California redwood (Sequoia semp ervirens). Inst. Wood Sci. J. 8:14 (1961).

    Google Scholar 

  8. Anonymous. Timbers: their natural durability and resistance to preservative treatment. Building Research Establishment Digest, Princes Risborough Laboratory, Aylesbury, U.K. p. 1-4. (1985).

    Google Scholar 

  9. MacLean, H.; Gardner, J.A.F. Distribution of fungicidal extractives (thujaplicin and water-soluble phenols) in western red cedar hearlwood. For. Prod. J. 6:510 (1956).

    Google Scholar 

  10. Scalbert, A. [unpublished results].

    Google Scholar 

  11. Hawley, L.F.; Fleck, L.C.; Richards, C.A. The relation between durability and chemical composition in wood. Ind. Eng. Chew. 16:699 (1924).

    Article  CAS  Google Scholar 

  12. Rudman, P.; DaCosta, E.W.B. The cause of natural durability in timber. IV. Variation in the role of toxic extractives in the resistance of durable eucalypts to decay. Holzforschung 15:10 (1961).

    Article  CAS  Google Scholar 

  13. Rudman, P. The causes of natural durability in timber. Part XII. The deterioration in antifungal activity of heartwood extractives during the life of trees of Eucalyptus marginata Sm. Holzforschung 17:86 (1963).

    Article  CAS  Google Scholar 

  14. Hillis, W.E.; Hart, J.H.; Yazaki, Y. Polyphenols of Eucalyptus sideroxylon wood. Phytochemistry 13:1591 (1974).

    Article  CAS  Google Scholar 

  15. Wang, S.; Hart, J.; Behr, E.A. Procedure for evaluating the effect of heartwood extractives on decay resistance. For. Prod. J. 30:55 (1980).

    CAS  Google Scholar 

  16. Anonymous. Wood and wood based products — natural durability of wood — Part 2: Natural durability and treatability of selected wood species of importance in Europe. European Standard. Project PREN 350 (1990).

    Google Scholar 

  17. Wagenführ, R.; Scheiber, C. Holzatlas. VEB Fachbuchverlag, Leipzig (1974).

    Google Scholar 

  18. Savard, J.; Nicolle, J.; André, A.M. Analyse chimique des bois tropicaux. Centre Technique Forestier Tropical, Nogent-sur-Mame (1960).

    Google Scholar 

  19. Browning, B.L.; Isenberg, I.H. Analytical data and their significance. In: Wise, L.E.; John, E.C. (eds.) Wood chemistry. Reinhold Publishing Corporation, New York, pp. 1259–1277 (1952).

    Google Scholar 

  20. Anonymous. Les eucalyptus dans les reboisements. FAO, Rome (1982).

    Google Scholar 

  21. Gambetta, A.; Orlandi, E. Natural durability of Eucalyptus camaldulensis and E. globulus cultivated in Italy. Cellulosa Carta 20:13 (1969).

    Google Scholar 

  22. Fengel, D. Uber die Veränderungen des Holzes und seiner Komponenten im Temperaturbereich bis 200° C. Erste Mitteilung: Heiss-und Kaltwasser Extracte von termisch behandeltem Fichtenholz. Holz Roh-Werkst. 24:9 (1966).

    Article  CAS  Google Scholar 

  23. Campbell, A.G.; Kim, W.J.; Koch, P. Chemical variation in lodgepole pine with sapwood/heartwood stem height and variety. Wood Fiber Sci. 22:22 (1990).

    CAS  Google Scholar 

  24. Anderson, A.B. Chemistry of western pines. Distribution and nature of acetone soluble extractives in ponderosa pine. Ind. Eng. Chem. 38:450 (1946).

    Article  CAS  Google Scholar 

  25. Brasch, D.J.; Wise, L.E. The chemistry of New Zealand-grown Pinus radiata. I. Summative analyses and preliminary studies on the hemicelluloses. Tappi 39:581 (1956).

    CAS  Google Scholar 

  26. Kubachkova, M.; Cetlova-Pranzkova, Drev. Vysk. 8:27 (1963). Quoted in: Fengel, D.; Wegener, G. Wood, chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin (1984).

    Google Scholar 

  27. Kürschner, K.; Melcerova, A. Uber die chemischen Veränderungen des Buchenholzes bei termischer Behandlung. Teil 1. Chemische Veränderungen von Sägespänen bei 28 tägiger Erhitzung auf 80–160 °C. Holzforschung 19:161 (1965).

    Article  Google Scholar 

  28. Clermont, L.P.; Schwartz, H. The chemical composition of Canadian woods. Pulp Pap. Mag. Can. 52:103 (1951).

    CAS  Google Scholar 

  29. Rennerfeit, E. The influence of the phenolic compounds in the heartwood of scots pine on the growth of some decay fungi in nutrient solution. Svenk. Bot. Tidskr. 39:311 (1945).

    Google Scholar 

  30. Erdtman, G. Uber einige Inhaltsstoffe des Kernholzes der Coniferenordnung Pinales. Ihre taxonomische, physiologische und biochemische Bedeutung. Holz Roh-Werkst. 11:245 (1953).

    Article  CAS  Google Scholar 

  31. Hathway, D.E.; Seakins, J.W.T. Hydroxystilbenes of Eucalyptus wandoo. Biochtm. J. 72:369 (1959).

    CAS  Google Scholar 

  32. Wang, S.C.; Hart, J.H. Heartwood extractives of Maclura pomifera and their role in decay resistance. Wood Fiber Sci. 15:290 (1983).

    CAS  Google Scholar 

  33. Hart, J.H. Role of phytostilbenes in decay and disease resistance. Annu. Rev. Phytopathol. 19:437 (1981).

    Article  CAS  Google Scholar 

  34. Rao, M.M.; Seshadri, T.R. Quinones of the heartwoods of Dalbergia species. Bull. Natl. Inst. Sci. India 28:1 (1965).

    Google Scholar 

  35. Rudman, P. The causes of natural durability in timber. Part XI. Some tests on the fungi toxicity of wood extractives and related compounds. Holzforschung 17:54 (1963).

    Article  CAS  Google Scholar 

  36. Sandermann, W. Holzinhaltstoffe, ihre Chemie und Biochemie. Naturwissenschaften 53:513 (1966).

    Article  PubMed  CAS  Google Scholar 

  37. Scheffer, T.C. Decay resistance of western redcedar. J. Forestry 55:434 (1957).

    Google Scholar 

  38. Swan, E.P.; Jiang, K.S.; Gardner, J.A.F. The lignans of Thuja plicata and the sapwood-heartwood transformation. Phytochemistry 8:345 (1969).

    Article  CAS  Google Scholar 

  39. Malterud, K.E.; Bremnes, T.E.; Faegri, A.; Moe, T.; Dugstad, E.K.S. Flavonoids from the wood of Salix caprea as inhibitors of wood destroying fungi. J. Nat. Prod. Lloydia 48:559 (1985).

    Article  CAS  Google Scholar 

  40. Rudman, P. The causes of natural durability in timber. VIII. The causes of decay resistance in tallow wood, white mahogany and mountain ash. Holzforschung 16:56 (1962).

    Article  CAS  Google Scholar 

  41. Hart, J.H.; Hillis, W.E. Inhibition of wood-rotting fungi by ellagitannins in the heartwood of Quercus alba. Phytopathology 62:620 (1972).

    Article  CAS  Google Scholar 

  42. Cartwright K. St. G. The variability in resistance to decay of the heartwood of home-grown western red cedar (Thuja plicata D. Don.) and its relation to position in the log. Forestry 15:65 (1941).

    Article  CAS  Google Scholar 

  43. Wilcox, W.W.; Piirto, D.D. Decay resistance in redwood (Sequoia sempervirens) heartwood as related to color and extractives. Wood Fiber 7:240 (1976).

    Google Scholar 

  44. Peterson, C.A.; Cowling, E.B. Decay resistance of extractive-free coniferous woods to whiterot fungi. Phytopathology 54:542 (1964).

    Google Scholar 

  45. Hergert, H.L. The future of wood extractives. In: Rowe, J.W. (ed.) Natural products of woody plants II. Springer Verlag, Berlin pp. 1165–1195 (1989).

    Chapter  Google Scholar 

  46. Smith, A.L.; Campbell, C.L.; Walker, D.B.; Hanover, J.W. Extracts from black locust as wood preservatives: extraction of decay resistance from black locust heartwood. Holzforschung 43:293 (1989).

    Article  CAS  Google Scholar 

  47. Peng, S.; Scalbert, A.; Monties, B. Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry 30:775 (1991).

    Article  CAS  Google Scholar 

  48. Scherrard, E.C.; Kurth, E.F. Distribution of extractive in redwood; its relation to durability. Ind. Eng. Chem. 25:300 (1933).

    Article  Google Scholar 

  49. Rudman, P.; DaCosta, E.W.B. Variation in extractive content and decay resistance in the heartwood of Tectona grandis. J. Inst. Wood Sci. 3:33 (1959).

    Google Scholar 

  50. Rudman, P. The causes of natural durability in timber. Part XIX. Ageing of eucalyptus heartwoods and its effects on decay resistance. Holzforschung 19:190 (1965).

    Article  CAS  Google Scholar 

  51. Wälchli, O.; Scheck, E. Uber die natürliche Pilzfestigkeit von Edelkastanien-holz (Casianea sativa Mill.) und ihre Ursache. Mat. Organ. 3:77 (1968).

    Google Scholar 

  52. Roux, D.G.; Evelyn, S.R. Condensed tannins. 1. A study of complex leucc-anthocyanins present in condensed tannins. Biochem. J. 69:530 (1958).

    PubMed  CAS  Google Scholar 

  53. Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: comparison of different estimation methods. J. Agr. Food Chem. 37:1324 (1989).

    Article  CAS  Google Scholar 

  54. Zavarin, E.; Snajberk, K. The chemistry of the natural phlobaphenes. III. Pyrolysis of the phlobaphenes from five representative softwood species. Tappi 48:612 (1965).

    CAS  Google Scholar 

  55. Gnamm, H. Die gerbstoffe und gerbmittel. 3rd ed. Wissenschaftliche, Stuttgart (1949).

    Google Scholar 

  56. Hathway, D.E. The condensed tannins. In: Hillis, W.E. (ed.) Wood extractives and their significance to the pulp and paper industries. Academic Press, New-York, pp. 191–228 (1962).

    Google Scholar 

  57. Russel, A.J. Natural tanning materials of the southeastern United States. J. Amer. Leather Chem. Assoc. 39:173 (1944).

    Google Scholar 

  58. Buchanan, M.A. The tannins and coloring matters. In: Wise, L.E.; Jahn E.C. (eds.) Wood chemistry, 2nd ed. Reinhold Publishing Corporation, New York, pp. 618–657 (1952).

    Google Scholar 

  59. Benson, H.K.; Jones, F.M. Tannin content of pacific coast trees. J. Ind. Eng. Chem. 9:1096 (1917).

    Article  CAS  Google Scholar 

  60. Kurth, E.F. The volatile oils. In: Wise, L.E. and Jahn, E.C. (eds.) Wood chemistry, 2nd ed., Reinhold Publishing Corporation, New-York, pp. 548–589 (1952).

    Google Scholar 

  61. Foo, L.Y. Condensed tannins: co-occurrence of procyanidins, prodelphinidins and profise-tinidins in the heartwood of Acacia baileyana. Phytochemistry 23:2915 (1984).

    Article  CAS  Google Scholar 

  62. Young, D.A.; Fereira, D.; Roux, D.G. Synthesis of condensed tannins. Part 15. Structure of natural “angular” profisetinidin tetraflavonoids: asymmetric induction during oligomeric synthesis. J. Chem. Soc., Perkin Trans. I:2529 (1985).

    Google Scholar 

  63. Steynberg, J.P.; Burger, J.F.W.; Malan, J.C.S.; Cronjé, A.; Yound, D.A.; Ferreira, D. Natural (-)-fisetinidol-(4,8)-(-)-epicatechin profisetinidins. Phytochemistry 29:275 (1990).

    Article  CAS  Google Scholar 

  64. Roux, D.G. Flavan-3,4-diols and leuco-anthocyanidins of Guibourtia spp. Nature 183:890 (1959).

    Article  CAS  Google Scholar 

  65. Ferreira, D.; Du Preez, I.C.; Wijnmaalen, J.C.; Roux, D.G. Biflavonoid proguibourtinidin carboxylic acids and their biflavonoid homologues from Acacia luederitzii. Phytochemistry 24:2415 (1985).

    Article  CAS  Google Scholar 

  66. Steynberg, P.J.; Burger, J.F.W.; Bezuidenhoudt, B.C.B.; Steynberg, J.P.; Van Dyk, M.S.; Ferreira, D. The first natural condensed tannins with (-)-catechin ‘terminal’ units. Tetrahedron 31:2059 (1990).

    Article  CAS  Google Scholar 

  67. Roux, D.G.; Paulus, E. Condensed tannins-13-Interrelationships of flavonoid components from the heartwood of Robinia pseudoacacia. Biochem. J. 82:324 (1962).

    PubMed  CAS  Google Scholar 

  68. Tindale, M.D.; Roux, D.G. An extended phytochemical survey of Australian species of Acacia: chemotaxonomic and phylogenetic aspects. Phytochemistry 13:829 (1974).

    Article  CAS  Google Scholar 

  69. Malan, E.; Roux, D.G. Flavonoids and tannins of Acacia species. Phytochemistry 14:1835 (1975).

    Article  CAS  Google Scholar 

  70. Foo, L.Y. A novel pyrogallol A-ring proanthocyanidin dimer from Acacia melanoxylon. J. Chem. Soc., Chem. Commun.: 236 (1986).

    Google Scholar 

  71. Young, D.A.; Kolodziej, H.; Fereira, D.; Roux, D.G. Synthesis of condensed tannins. Part 16. Stereochemical differentiation of the first “ angular” (2S,3R)-Profisetinidin tetraflavonoids from Rhus lancea (Karree) and the varying dynamic behaviour of their derivatives. J. Chem. Soc., Perkin Trans. 1: 2537 (1985).

    Article  Google Scholar 

  72. Viviers, P.M.; Young, D.A.; Botha, J.J.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 6. The sequence of units, coupling positions and absolute configuration of the first linear (4,6: 4,6) triflavanoid with terminal 3,4-diol function. J. Chem. Soc., Perkin Trans. 1: 535 (1982).

    Article  Google Scholar 

  73. Malan, J.C.S.; Young, D.A.; Steenkamp, J.A.; Ferreira, D. Oligomeric flavanoids. Part 2. The first profisetinidins with dihydroflavonols constituent units. J. Chem. Soc., Perkin Trans. 1: 2567 (1988).

    Article  Google Scholar 

  74. Young, E.; Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 17. Oligomeric (2R,3S)-3,3′,4′,7,8-pentahydroxyflavans: atropoisomerism and conformation of biphenyland m-terphenyl analogues from Prosopis glandulosa (“Mesquite”). J. Chem. Soc., Perkin Trans. I: 1737 (1986).

    Article  Google Scholar 

  75. Saayman, H.M.; Roux, D.G. The origins of tannins and flavonoids in black-wattle barks and heartwoods, and their associated “non-tannin” components. Biochem. J. 97:794 (1965).

    PubMed  CAS  Google Scholar 

  76. Roux, D.G.; Evelyn, S.R. Condensed tannins-4-The distribution and deposition of tannins in heartwoods of Acacia mollissima and Schinopsis spp. Biochem. J. 76:17 (1960).

    PubMed  CAS  Google Scholar 

  77. Hillis, W.E.; Carle, A. The polyphenols and shikimic acid of eucalypt cambium and wood. Holzforschung 12:136 (1958).

    Article  CAS  Google Scholar 

  78. Hillis, W.E.; Carle, A. The origin of the wood and bark polyphenols of Eucalyptus species. Biochem. J. 82:435 (1962).

    PubMed  CAS  Google Scholar 

  79. Seikel, M.K.; Hillis, W.E. Hydrolysable tannins of Eucalyptus delegatensis wood. Phytochemistry 9:1115 (1970).

    Article  CAS  Google Scholar 

  80. Mayer, W.; Gabler, W.; Riester, A.; Korger, H. Uber die Gerbstoffe aus dem Holz der Eedelkastanie and der Eiche. II. Die Isolierung von Castalagin, Vescalagin, Castalin und Vescalin. Lieb. Ann. Chem. 707:177 (1967).

    Article  CAS  Google Scholar 

  81. Hervé du Penhoat, C.L.M.; Michon, V.M.T.; Ohassan, A.; Peng, S.; Scalbert, A.; Gage, D. Roburin A, a dimeric ellagitannin from heartwood of Quercus robur. Phytochemistry 30:329 (1991).

    Article  Google Scholar 

  82. Hervé Du Penhoat, C.L.M.; Michon, V.M.F.; Peng, S.; Viriot, C.; Scalbert, A.; Gage, D. The structural elucidation of new dimeric ellagitannins from Quercus robur L., roburins A.E. J. Chem. Soc., Perkin Trans. I:1653 (1991).

    Google Scholar 

  83. King, H.G.C.; White, T. Tannins and polyphenols of Schinopsis (Quebracho) spp. Their genesis and inter-relationship. J. Soc. Leather Trade Chem. 41:368 (1957).

    CAS  Google Scholar 

  84. Hillis, W.E.; Yazaki, Y. Wood polyphenols of Eucalyptus polyanthemos. Phytochemistry 12:2969 (1973).

    Article  CAS  Google Scholar 

  85. Hillis, W.E.; Inoue, T. The formation of polyphenols in trees. III. The effect of enzyme inhibitors. Phytochemistry 5:483 (1966).

    Article  CAS  Google Scholar 

  86. Hillis, W.E.; Hasegawa, M. The formation of polyphenols in trees. 1. Administration of 14 C glucose and subsequent distribution of radioactivity. Phytochemistry 2:195 (1963).

    Article  CAS  Google Scholar 

  87. Hasegawa, M.; Shiroya, M. Translocation and transformation of sucrose in the wood of Prunus yedoensis. Bot. Mag. Tokyo 79:595 (1966).

    CAS  Google Scholar 

  88. Wardrop, A.B.; Cronshaw, J. Formation of phenolic substances. Nature 193:90 (1962).

    Article  CAS  Google Scholar 

  89. Chafe, S.C.; Durzan, D.J. Tannin inclusions in cell suspension cultures of white spruce. Planta 113:251 (1973).

    Article  CAS  Google Scholar 

  90. Higuchi, T.; Onda, Y.; Fujimoto, Y. Biochemical aspects of heartwood formation, with special reference to the site of biogenenis of heartwood compounds. Wood Res.: 15 (1969).

    Google Scholar 

  91. Higuchi, T.; Fukazawa, K.; Shimada, M. Biochemical studies on the heartwood formation. Res. Bull. College Exp. For. 25:167 (1967).

    Google Scholar 

  92. Stafford, H.A.; Lester, H.H.; Weider, R.M. Histochemical assay of proanthocyanidin heterogeneity in cell cultures. Plant Sci. 52:99 (1987).

    Article  CAS  Google Scholar 

  93. Ebermann, R.; Stich, K. Distribution and seasonal variation of wood peroxidase activity in oak (Quercus rohur). Wood Fiber Sci. 17:391 (1985).

    CAS  Google Scholar 

  94. Sealbert, A.; Monties, B.; Favre, J.M. Polyphenols of Quercus robur. adult tree and in vitro grown calli and shoots. Phytochemistry 27:3483 (1988).

    Article  Google Scholar 

  95. Lavisci, P.; Scalbert, A.; Masson, D.; Janin, G. Quality of turkey oak (Quercus cerris L.) wood. I. Soluble and insoluble proanthocyanindins. Holzforschung 45:291 (1991).

    Article  CAS  Google Scholar 

  96. Hillis, W.E.; Carle, A. The formation of phenolic substances in Eucalyptus gigantea and Eucalyptus siberiana. Biochem. J. 74:607 (1960).

    PubMed  CAS  Google Scholar 

  97. Hemingway, R.W.; Hillis, W.E. Behavior of ellagitannins, gallic acid, and ellagic acid under alkaline conditions. Tappi 54:933 (1971).

    CAS  Google Scholar 

  98. Foo, L.Y.; Karchesy, J.J. Chemical nature of phlobaphenes. In: Hemingway, R.W.; Karchesy, J.J. (eds.), Chemistry and significance of condensed tannins. Plenum Press, New York, pp. 109–118 (1989).

    Chapter  Google Scholar 

  99. Stich, K.; Ebermann, R. Peroxidase und Polyphenoloxidaseisoenzyme in Splint-und Kernholz der Eiche. Holzforschung 38:239 (1984).

    Article  CAS  Google Scholar 

  100. Stewart, C.M.; Kottek, J.F.; Dadswell, H.E.; Watson, A.J. The process of fiber separation. III. Hydrolytic degradation within living trees and its effects on the mechanical pulping and other properties of wood. Tappi 44:798 (1961).

    CAS  Google Scholar 

  101. Fengel, D. Ultrastructural changes during aging of wood cells. Wood Sci. Technol. 4:176 (1970).

    Article  Google Scholar 

  102. Preusser, H.J.; Dietrichs, H.H.; Gottwald, H. Electronenmikroskopische Untersuchungen an Ultradünnschnitten des Markstrahlparenchyms der Rotbuche. Holzforschung 15:65 (1961).

    Article  Google Scholar 

  103. Gray, R.L.; Rickey, R.G.; Hergert, H.L. The influence of sapwood-heartwood conversion of bordered pit tori in western hemlock on bisulfite pulping. Wood Fiber Sci. 15:251 (1983).

    CAS  Google Scholar 

  104. Bland, D.E.; Hillis, W.E. Microspectrophotometric investigation of lignin and polyphenol distribution in wood sections. Appita 23:204 (1969).

    CAS  Google Scholar 

  105. Chafe, S.C. Changes in shrinkage and collapse in the wood of Eucalyptus regnans F. Muell. following extraction. Holzforschung 44:235 (1990).

    Article  CAS  Google Scholar 

  106. Tarkow, H.; Krueger, J. Distribution of hot-water soluble material in cell walls and cavities of redwood. For. Prod. J. 11:228 (1961).

    CAS  Google Scholar 

  107. Kuo, M.; Arganbright, D. Cellular distribution of extractives in redwood and incense cedar. Part 1. Radial variation in cell-wall extractive content. Holzforschung 34:17 (1980).

    Article  CAS  Google Scholar 

  108. Haars, A.; Chet, I.; Hüttermann, A. Effect of phenolic compounds and tannins on growth and laccase activity of Fomes annosus. Eur. J. Forest Pathol. 11:67 (1981).

    Article  CAS  Google Scholar 

  109. Wehmer, C. Hausschwammstudien. II. Der wachstrumshemmende Einfluss von Gerbsauren auf Merulius lacrymans in seiner Beziehung zur Resistenz des Eichenholzes gegen Hausschwamm. Mycol. Centr. 1:138 (1912).

    Google Scholar 

  110. Arora, D.S.; Sandhu, D.K. Laccase production and wood degradation by Trametas hirsuia. Folia Microbiol., Prague, 29:310 (1984).

    Article  CAS  Google Scholar 

  111. Scalbert, A. Antimicrobial properties of tannins. Phyto chemistry 30:3875 (1991).

    CAS  Google Scholar 

  112. Henis, Y.; Tagari, H.; Volcani, R. Effect of water extracts of carob pods, tannic acid, and their derivatives on the morphology and growth of microorganisms. Appl. Microbiol. 12:204 (1964).

    PubMed  CAS  Google Scholar 

  113. Grant, W.D. Microbial degradation of condensed tannins. Science 193:1137 (1976).

    Article  PubMed  CAS  Google Scholar 

  114. Lyr, H. On the toxicity of oxidized polyphenols. Phytopathol. Z. 52:229 (1965).

    Article  CAS  Google Scholar 

  115. Benoit, R.E.; Starkey, R. Enzyme inactivation as a factor in the inhibition of decomposition of organic matter by tannins. Soil Sci. 105:203 (1968).

    Article  CAS  Google Scholar 

  116. Mole, S.; Waterman, P.G. A critical analysis of techniques for measuring tannins in ecological studies. 2. Techniques for biochemically defining tannins. Oecologia 72:148 (1987).

    Article  Google Scholar 

  117. Lyr, H. Hemmungsanalytische Untersuchungen an einigen Ektoenzymen holzzerstörender pilze. Enzymologia 23:231 (1961).

    PubMed  CAS  Google Scholar 

  118. Basaraba, J.; Starkey, R.L. Effect of plant tannins on decomposition of organic substances. Soil Sci. 101:17 (1966).

    Article  CAS  Google Scholar 

  119. Benoit, R.E.; Starkey, R.L. Inhibition of decomposition of cellulose and some other carbohydrates by tannin. Soil Sci. 105:291 (1968).

    Article  CAS  Google Scholar 

  120. Duncan, C.J.; Bowler, K.; Davidson, T.F. The effect of tannic acid on the phosphorylation and ATPase activity of mitochondria from blowfly flight muscle. Biochem. Pharmacol. 19:2453 (1970).

    Article  PubMed  CAS  Google Scholar 

  121. Konishi, K.; Adachi, H.; Kita, K.; Horikoshi, I. Inhibitory effects of tannic acid on the respiratory chain of Photobacterium phosphoreum. Chem. Pharm. Bull. 35:1169 (1987).

    Article  CAS  Google Scholar 

  122. Weinberg, E.D. Iron withholding: a defence against infection and neoplasia. Physiol. Rev. 64:65 (1984).

    PubMed  CAS  Google Scholar 

  123. Bullen, J.J.; Rogergs, H.J.; Leigh, L. Iron-binding proteins in milk and resistance to Es-cherichia coli infection in infants. Brit. Med. J. 1:69 (1972).

    Article  PubMed  CAS  Google Scholar 

  124. Ong, S.; Neilands, J.B. Siderophores in microbially processed cheese. J. Agr. Food Ckem. 27:990 (1979).

    Article  CAS  Google Scholar 

  125. Wawszkiewicz, E.J. Riddle of the pacifarins. Microbiology 299 (1974).

    Google Scholar 

  126. Hurrell, R.F. The influence of polyphenol-containing beverages on iron absorption. Bull. Groupe Polyphenols 15:268 (1990).

    CAS  Google Scholar 

  127. Fekete, F.A.; Chandhoke, V.; Jellison, J. Iron-binding compounds produced by wood-decaying basidiomycetes. Appl. Environ. Microbiol. 55:2720 (1989).

    PubMed  CAS  Google Scholar 

  128. Windholz, M.; Budavari, S.; Blumetti, R.F.; Otterbein, E.S. (eds.). The Merck Index, 10th Edition. Merck and Co. Inc., Rahway, N.J. U.S.A. (1983).

    Google Scholar 

  129. White, T. The chemistry of quebracho. Instituto del Quebracho (IDEQ), Buenos Aires (1974).

    Google Scholar 

  130. White, T.; Kirby, K.S.; Knowles, E. Tannins. IV. The complexity of tannin extract composition. J. Soc. Leather Trade Chem. 36:148 (1952).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scalbert, A. (1992). Tannins in Woods and Their Contribution to Microbial Decay Prevention. In: Hemingway, R.W., Laks, P.E. (eds) Plant Polyphenols. Basic Life Sciences, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3476-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3476-1_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6540-2

  • Online ISBN: 978-1-4615-3476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics