Skip to main content

Atomic Small Clusters and their Correspondence to Nuclear Physics

  • Chapter
Condensed Matter Theories

Part of the book series: Condensed Matter Theories ((COMT,volume 7))

  • 147 Accesses

Abstract

The physics of microclusters is a very rapidly growing, new area of science. It is an interdisciplinary topic and thus attracts scientists from many related sciences, e.g. solid state, chemistry, atomic physics, plasma physics, crystalography, and nuclear physics, both theorists and experimentalists. Their research takes place both in academic institutes and in industries, since a large number of important applications are immediately expected, e.g., in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anagnostatos, G.S..1985, Isomorphic shell model for closed-shell nuclei, Int. J. Theor. Phys., 24: 579.

    Article  Google Scholar 

  • Anagnostatos, G.S., 1987, Magic numbers in small clusters or rare-gas and alkali atoms, Phys. Lett. A, 124: 85.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 1988a, Magic numbers in small clusters made up of two kinds of alkali atoms, Phys. Lett. A, 128: 266.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 1988b, Magic numbers in small clusters of mixed rare gases, Phys. Lett. A, 133: 419.

    Article  MathSciNet  ADS  Google Scholar 

  • Anagnostatos, G.S., 1989, Magic numbers in alkali/heteroation microclussters, Phys. Lett. A, 142:146.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 1990a, Magic numbers in semiconductor microclusters, Phys. Lett. A, 143: 332.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 1990b, Addendum on the unique stability of CoAr6+, Phys. Lett. A, 148: 291.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 1990c. Magic umbers in alkali-halide microclusters, Phys. Lett A, 150: 303.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 1991a, Alkali-atom shell model, Phys. Lett. A, 154: 169.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 199lb, Fermion/boson classification in microclusters, Phys. Lett. A, 157: 65.

    Article  Google Scholar 

  • Anagnostatos, G.S., 1991c, Multipotential model for atoms in alkali microclusters, Z. Phys. D, 19: 121.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., 1991d, Small clusters made up of three kinds of neutral alkali atoms, Z. Phys. D, 19: 125.

    Article  ADS  Google Scholar 

  • Anagnostatos, G.S., and Grypeos, M.E., 1990, A rough estimate of the size of the A-hyperon bag, in: “Proceedings of the PANIC XII International Conference on Particles and Nuclei”, T.W. Donnelly, ed., MIT, Boston.

    Google Scholar 

  • Anagnostatos, G.S., Gridnev, K.A., and Subbotin, V.B. 1990, Nucleon clusters, in: “Proceedings of the ISSPIC5 5th International symposium on Small Particles and Inorganic Clusters”, O. Echt, E. Recknagel, D. Kreisle, and R. Pflaum, eds, Universität Konstanz, Konstanz.

    Google Scholar 

  • Bhaskar, N.D., Frueholz, R.P., Klimcak, C.M., and Cook, R.A., 1987, Evidence of electronic shell structure in Rb+ N (N=1–100) produced in a liquid-metal ion source, Phys. Rev. B, 36: 4418.

    Article  ADS  Google Scholar 

  • Brown, B.A., Bronk, C.R., and Hodgson, P.E., 1984, Systematics of nuclear rms charge radii, J. Phys. G, 10: 1683.

    Article  ADS  Google Scholar 

  • Celenza, L.S., and Shakin, C.M., 1983, Quark model calculations of nucleon structure functions. Phys. Rev. C, 27: 1561.

    Article  ADS  Google Scholar 

  • Chou, M.Y., Cleland, A., and Cohen, M.L. 1984, Total energies, abundances, and electronic shell structure of lithium sodium and potasium clusters, Solid State Comm., 52: 645.

    Article  ADS  Google Scholar 

  • Coxeter, H.S.M. 1973, “Regular Polytopes” Macmillan, New York.

    Google Scholar 

  • De Jager, C.W., de Vries, H., and de Vries, C., 1974, Nuclear charge - and

    Google Scholar 

  • Echt, O., Sattle, K. and Recknagel, E., 1981, Magic nimbers for sphere packings: Experimental verification in free xenon clusters, Phys. Rev. Lett., 47: 1121.

    Article  ADS  Google Scholar 

  • Engfer, R., Schneuwly, H., Vuilleumier, J.L., Valter, H.K., and Zehnder, A., 1974, Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms, At. Data Nucl. Data Tables, 14: 509.

    Article  ADS  Google Scholar 

  • Franke, G., Hilf, E. and Palley, L. 1988, Quantum mechanics and phase transitions in small noble-gas clusters, Z. Phys. D, 9: 343.

    Article  ADS  Google Scholar 

  • Gspann, G., 1986, On the phase of metal clusters, Z. Phys. D, 3:143.

    Article  ADS  Google Scholar 

  • Hill, D.L., 1957, Matter and charge distribution within atomic nuclei, in: “Encyclopedia of Physics fix”, S. Flügge, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Hornyak, W.F., 1975, “Nuclear Structure”, Academic, New York.

    Google Scholar 

  • Kappes, M.M., 1988, Experimental studies of gas-phase main group metal clusters, Chem.Rev., 88: 369.

    Article  Google Scholar 

  • Katakuse, I., and Ichihara, T., 1986, Mass distributions of negative cluster ions of copper, silver, and gold, Int. J. Mass Spectr. Ion Proc., 74: 33.

    Article  Google Scholar 

  • Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W.A., Chow, M.Y., and Cohen, M.L., 1984, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett., 52: 2141.

    Article  ADS  Google Scholar 

  • Pettiette, C.L., Yang, S.H., Craycraft, M.J., Conceicao, J., Laaksonen, R.T., Cheshnovsky, O., and Smalley, R.E., 1988, Ultraviolet photoelectron spectroscopy of copper clusters, J. Chem. Phys., 88: 5377.

    Article  ADS  Google Scholar 

  • Phillips, J.C., 1986, Magic numbers of alkali halide clusters, in: “Proceedings of the International Symposium on the Physics and Chemistry of Small Clusters”, P. Jena, B.K. Rao, and S.N. Khanna, eds, Plenum Press, New York.

    Google Scholar 

  • Ross, M.M., O’Keefe, A., and Baronayski, A.P., 1986, Production of cluster ions by laser vaporization, in: “Proceedings of the International Symposium on the Physics and Chemistry of Small Clusters”, P. Jena, B.K. Rao, and S.N. Khanna, eds. Plenum Press, New York.

    Google Scholar 

  • Saito, Y., Watanabe, M., Hagiwara, T., Nishigaki, S., and Noda, T., 1988, Magic numbers in a mass spectrum of lithium clusters emitted from a liquid metal ion source, Jpn J. Apnl. Phys., 27: 424.

    Article  ADS  Google Scholar 

  • Saito, Y., Minami, K., Ishida, T., and Noda, T., 1989, Abundance of Na cluster ions ejected from a liquid metal ion source, Z. Phys. D, 11: 87.

    Article  ADS  Google Scholar 

  • Thomas, A.W., 1984, Chiral symmetry and the bag model: A new starting point for nuclear physics, in: “Advances in Nuclear Physics 13”, J.W., Negele, and E., Vogt, eds, Plenum Press, New York.

    Google Scholar 

  • Wapstra, A.H., and Gove, N.B., 1971, The 1971 atomic mass evaluation, Nucl. Data Tables, 9: 267.

    Article  Google Scholar 

  • Wesolowski, E., 1984, The rms radii of nuclear proton distributions, J. Phys. G, 10: 321.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anagnostatos, G.S. (1992). Atomic Small Clusters and their Correspondence to Nuclear Physics. In: Proto, A.N., Aliaga, J.L. (eds) Condensed Matter Theories. Condensed Matter Theories, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3352-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3352-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6478-8

  • Online ISBN: 978-1-4615-3352-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics