Skip to main content

Accurate Modeling of Antennas for Radiating Short Pulses, FDTD Analysis and Experimental Measurements

  • Chapter
Ultra-Wideband, Short-Pulse Electromagnetics

Abstract

Antennas used to radiate short pulses often require different design rules than those that are used to radiate essentially time-harmonic signals. If one considers only the performance in the time-domain, i.e., time varying waveforms, then the following are reasonable criteria for the performance of the antenna: (i) The radiated pulse should be a faithful reproduction of the excitation; i.e., there should be little pulse distortion on radiation, (ii) The reflected signal at the input of the antenna should be small. For practical systems, the peak amplitude of the reflected signal typically is required to be 40 dB below that of the incident signal, (iii) The amplitude of the radiated signal in the desired direction should be as large as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Wohlers, “The GWIA, an Extremely Wide Bandwidth Low-Dispersion Antenna,” Calspan Corp., Buffalo, NY, 1971.

    Google Scholar 

  2. T. T. Wu and R. W. P. King, “The Cylindrical Antenna with Nonreflecting Resistive Loading,” IEEE Trans. Antennas Propagat., vol. AP-13, pp. 369–373, May 1965.

    Article  ADS  Google Scholar 

  3. J. G. Maloney and G. S. Smith, “The Role of Resistance in Broadband, Pulse-Distortionless Antennas,” Proc. 1991 IEEE APS Int. Symp., London, Ontario, June 1991, vol. 2, pp. 707-710; also “A Study of Transient Radiation from the Wu-King Resistive Monopole — FDTD Analysis and Experimental Measurements,” submitted for publication to IEEE Trans. Antennas Propagat.

    Google Scholar 

  4. S. Evans and F. N. Kong, “TEM Horn Antenna: Input Reflection Characteristics in Transmission,” IEE Proc., vol. 130, pt. H, pp. 403–409, Oct. 1983.

    Google Scholar 

  5. J. G. Maloney, G. S. Smith, and W. R. Scott, Jr., “Accurate Computation of the Radiation from Simple Antennas Using the Finite-Difference Time-Domain Method,” Proc. 1989 IEEE AP-S Int. Symp., San Jose, CA, June 1989, pp. 42-45; also IEEE Trans. Antennas Propagat., vol. 38, no. 7, pp. 1059-1068, July 1990.

    Google Scholar 

  6. J. Fang, “Time Domain Finite Difference Computation for Maxwell’s Equations,” Ph.D. Dissertation, University of California at Berkeley, Nov. 1989.

    Google Scholar 

  7. K. S. Yee, D. Ingham, and K. Shlager, “Time-Domain Extrapolation to the Far Field Based on FDTD Calculations,” IEEE Trans. Antennas Propagat., vol. 39, pp. 410–413, Mar. 1991.

    Article  ADS  Google Scholar 

  8. J. G. Maloney and G. S. Smith, “The Use of Surface Impedance Concepts in the Finite-Difference Time-Domain Method,” IEEE Trans. Antennas Propagat., vol. 40, pp. 38–48, Jan. 1992.

    Article  ADS  Google Scholar 

  9. J. G. Maloney and G. S. Smith, “The Efficient Modeling of Thin Material Sheets in the Finite-Difference Time-Domain (FDTD) Method,” IEEE Trans. Antennas Propagat., vol. 40, pp. 323–330, Mar. 1992.

    Article  ADS  Google Scholar 

  10. J. G. Maloney and G. S. Smith, “Optimization of Pulse Radiation from a Simple Antenna using Resistive Loading,” Microwave and Optical Technology Letters, vol. 5, pp. 299–303, June 1992.

    Article  ADS  Google Scholar 

  11. J. G. Maloney and G. S. Smith, “Optimization of a Resistively Loaded Conical Antenna for Pulse Radiation,” Proc. 1992 IEEE APS Int. Symp., Chicago, IL, vol. 4, July 1992, pp. 1968-1971; also “Optimization of a Conical Antenna for Pulse Radiation: An Efficient Design Using Resistive Loading,” submitted for publication to IEEE Trans. Antennas Propagat.

    Google Scholar 

  12. J. G. Maloney, “Analysis and Synthesis of Transient Antennas using the Finite-Difference Time-Domain (FDTD) Method,” Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 1992.

    Google Scholar 

  13. A. Reineix and B. Jecko, “Analysis of Microstrip Patch Antennas Using the Finite-Difference Time-Domain Method,” IEEE Trans. Antennas Propagat., vol. 37, pp. 1361–1369, Nov. 1989.

    Article  ADS  Google Scholar 

  14. D. S. Katz, M. J. Piket-May, A. Taflove, and K. R. Umashankar, “FDTD Analysis of Electromagnetic Wave Radiation from Systems Containing Horn Antennas,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1203–1212, Aug. 1991.

    Article  ADS  Google Scholar 

  15. P. A. Tirkas and C. A. Balanis, “Finite-Difference Time-Domain Method for Antenna Radiation,” IEEE Trans. Antennas Propagat., vol. 40, pp. 334–340, Mar. 1992.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maloney, J.G., Smith, G.S. (1993). Accurate Modeling of Antennas for Radiating Short Pulses, FDTD Analysis and Experimental Measurements. In: Bertoni, H.L., Carin, L., Felsen, L.B. (eds) Ultra-Wideband, Short-Pulse Electromagnetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2870-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2870-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6244-9

  • Online ISBN: 978-1-4615-2870-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics