Skip to main content

Nitric Oxide and Peroxynitrite in Ozone-Induced Lung Injury

  • Chapter
Book cover Biological Reactive Intermediates VI

Abstract

One of the hallmarks of the inflammatory response associated with tissue injury is the accumulation of macrophages at sites of damage. These cell types release proinflammatory cytokines and cytotoxic mediators to destroy invading pathogens and initiate wound repair. However, when produced in excessive amounts, these macrophage-derived mediators may actually contribute to tissue injury. This process involves both direct damage to target tissues and amplification of the inflammatory response. One group of macrophage-derived mediators of particular interest are reactive nitrogen intermediates including nitric oxide and peroxynitrite which have been implicated in tissue injury induced by a variety of toxicants. Our laboratory has been investigating the role of reactive nitrogen intermediates in lung injury induced by oxidants such as ozone. Inhalation of ozone causes epithelial cell damage and Type II cell hyperplasia. This is associated with an accumulation of activated macrophages in the lower lungs which we have demonstrated contribute to toxicity. To analyze the role of macrophage-derived reactive nitrogen intermediates in ozone toxicity, we used transgenic mice lacking the gene for inducible nitric oxide synthase (NOSII). Treatment of wild type control animals with ozone (0.8 ppm) for 3 hr resulted in an increase in bronchoalveolar lavage (BAL) fluid protein reaching a maximum 24–48 hr after exposure. This was correlated with increased expression of NOSII protein and mRNA by alveolar macrophages and increased production of nitric oxide as well as peroxynitrite. Ozone inhalation also resulted in the appearance of nitrotyrosine residues in the lungs, an in vivo marker of peroxynitrite-induced damage. In contrast, in NOSII knockout mice, BAL protein was not increased demonstrating that these mice were protected from ozone-induced epithelial injury. Moreover, alveolar macrophages from the transgenic mice did not produce nitric oxide or peroxynitrite even after ozone inhalation. There was also no evidence for the formation of nitrotyrosine in lung tissue. These data indicate that ozone-induced lung injury is mediated by reactive nitrogen intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Lippman, Health effects of tropospheric ozone: review of recent research findings and their implications to ambient air quality standards J. Expos. Anal. Environ. Epidemiol 3: 103–129 (1993).

    Google Scholar 

  2. K.J. Pendino, J.D. Laskin, R.L. Shuler, C.J. Punjabi and D.L. Laskin, Enhanced production of nitric oxide by rat alveolar macrophages following inhalation of a pulmonary irritant is associated with increased expression of nitric oxide synthase J. Immunol 151: 7196–7205 (1993).

    PubMed  CAS  Google Scholar 

  3. K.J. Pendino, R.L. Schuler, J.D. Laskin, and D.L. Laskin, Enhanced production of interleukin-1, tumor necrosis factor-a and fibronectin by rat lung phagocytes following inhalation of a pulmonary irritant Am. J. Resp. CellMolec. Biol 11: 279–286 (1994).

    CAS  Google Scholar 

  4. K.J. Pendino, T.M. Meidoff, D.E. Heck, J.D. Laskin, and D.L. Laskin, Inhibition ofmacrophages with gadolinum chloride abrogates ozone-induced pulmonary injury and inflammatory mediator production Am. J. Respir. Cell Molec. Biol 13: 125–132 (1995).

    CAS  Google Scholar 

  5. K.J. Pendino, Gardner, C.R., Shuler, R.L., Laskin, J.D., Durham, S.K., Goller, N.L., Ohnishi, S.T., Ohnishi, T., and D.L. Laskin, Inhibition of ozone-induced nitric oxide synthase expression in the lung by endotoxin Am. J Respir, Cell Molec. Biol 14: 516–525 (1996).

    CAS  Google Scholar 

  6. L.Y. Haddad, H. Ischiropoulos. B.A. Holm, J.S. Beckman, J.R. Baker and S. Matalon, Mechanisms of peroxynitrite-induced injury to pulmonary surfactants Am. J. Physiol 265: L555–L564 (1993).

    PubMed  CAS  Google Scholar 

  7. J. Beckman, P. Mehta, V. Hanks, W.H. Rowan and L. Liu, Effects of peroxynitrite on pulmonary edema and the oxidative state, Exp Lung Res 26: 349–59 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. B.M. Babior, Phagocytes and oxidative stress Am. J. Med 109: 33–44 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. M.J.D. Griffiths, M. Messent, R.J. MacAllister and T.W. Evans, Aminoguanidine selectively inhibits inducible nitric oxide synthase Br. J. Pharmacol 110: 963–968 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. B. Freeman, Free radical chemistry of nitric oxide. Looking at the dark side Chest 105: 79S–84S (1994).

    CAS  Google Scholar 

  11. J. Beckman and J.P. Crow, Pathological implications of nitric oxide, superoxide and peroxynitrite formation Biochem. Soc. Trans 21: 330–334 (1993).

    PubMed  CAS  Google Scholar 

  12. C.J. Punjabi, K.J. Pendino, J.D. Laskin and D.L. Laskin, Production of nitric oxide by rat type II pneumocytes. Increased Expression of inducible nitric oxide synthase following exposure to a pulmonary irritant Am. J. Resp. Cell Mol. Biol 11: 165–172 (1994).

    CAS  Google Scholar 

  13. R. Radi, J. S. Beckman, K.M. Bush and B.A. Freeman, Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide Arch. Biochem. Biophys 288: 481–487 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. R. Radi, J. S. Beckman, K.M. Busch and B.A. Freeman, Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys 266: 4244–4250 (1991).

    CAS  Google Scholar 

  15. H. Ischiropoulos, A. Gow, S.R. Thom, N.W. Kooy, J.A. Royall and J.P. Crow, Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 Methods Enzymol 301: 367–373 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. H. Ischiropoulos, Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species Arch Biochem. Biophys 3 56: 1–11 (1998).

    Article  Google Scholar 

  17. J.P. Crow and H. Ischiropoulos, Detection and quantitation ofnitrotyrosine residues in proteins: in vivo marker of peroxynitrite Methods Enzymol 269: 185–94 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. C.F. Nathan, Nitric oxide as a secretory product of mammalian cells FASEB J 6: 3051–3064 (1992).

    PubMed  CAS  Google Scholar 

  19. C.F. Nathan and J.B. Hibbs, Role of nitric oxide synthesis in macrophage antimicrobial activity Curr. Opin. Immunol 3: 65–70 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. C.R. Gardner and D.L. Laskin, Protective and pathologic roles of nitric oxide in tissue injury, in: Cellular and Molecular Biology of Nitric Oxide J.D. Laskin, and D.L. Laskin, eds., Marcel Dekker, N.Y., 225–246 (1999).

    Google Scholar 

  21. C.R. Gardner, D.E. Heck, H. Chiu, J.D. Laskin, S.K. Durham, and D.L. Laskin, Decreased hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase, in: Cells of the Hepatic Sinusoid, Vol. 7, E. Wisse, D. L. Knook, R. DeZanger, and R. Fraser, eds., Kupffer Cell Foundation, Leiden, 104–105 (1999).

    Google Scholar 

  22. S.S. Gross and M.S. Wolin, Nitric oxide: pathological mechanisms Annu. Rev. Physiol 57: 737–769 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. S. Matalon and H. O’Brodovich, Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance Annu. Rev. Physiol 61: 627–661 (1999)

    Article  PubMed  CAS  Google Scholar 

  24. J.E. Ryer-Powder, M.A. Amoruso, B. Czerniecki, G. Witz, and B.D Goldstein, Inhalation of ozone produces a decrease in superoxide anion radical production in mouse alveolar macrophages Am. Rev. Respir. Dis 138: 1129–1133 (1988).

    PubMed  CAS  Google Scholar 

  25. G.W. Hunninghake, J.E. Gadek, O. Kawanami, V.J. Ferrans, and R.G. Crystal, Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage Am. J. Pathol 97: 149–206 (1979).

    PubMed  CAS  Google Scholar 

  26. D.L. Laskin and J.D. Laskin, J.D., Phagocytes, in: Comprehensive Toxicology Vol. 5 Toxicology of the Immune System D.A. Lawrence, ed., Pergamon, N.Y., 97–112 (1997).

    Google Scholar 

  27. A. Sterner-Kock, M. Kock, R. Braun and D.M. Hyde, Ozone-induced epithelial injury in the ferret is similar to nonhuman primates Am. J. Respir. Crit. Care Med 162: 1152–1156 (2000).

    PubMed  CAS  Google Scholar 

  28. J.S. Fedan, L.L. Millecchia, R.A. Johnston, A. Rengasamy, A. Hubbs, R.D. Dey, L.X.Yuan, D. Watson, W.T. Goldsmith, J.S. Reynolds, L. Orsini, J. Dortch-Carnes, D. Cutler and D.G. Frazer, Effect of ozone treatment on airway reactivity and epithelium-derived relaxing factor in guinea pigs J. Pharmacol. Exp. Ther 293: 724–734 (2000).

    PubMed  CAS  Google Scholar 

  29. J. T. Zelikoff, G. L. Kraemer, M.C. Vogel, and R.B. Schlessinger, Immunomodulating effects of ozone on macrophage functions important for tumor surveillance and host defense J. Toxicol. Environ. Health 34: 449–467 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. K.E. Driscoll, T.A. Vollmuth, and R.B. Schlesinger, Acute and subchronic ozone inhalation in the rabbit: response of alveolar macrophages J. Toxicol. Environ. Health 21: 27–43 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. D.J. Bassett, C. Elbon-Copp, Y. Ishii, H. Barraclough-Mitchell and H.J.Yang, Lung tissue neutrophil content as a determinant of ozone-induced injury J. Toxicol. Environ. Health 60: 513–530 (2000).

    Article  CAS  Google Scholar 

  32. R.E. Gordon, E. Park, D. Laskin, G.B. Schuller-Levis, Taurine protects rat bronchioles from acute ozone exposure: a freeze fracture and electron microscopic study Exp. Lung Res 24: 659–674 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. G.B. Shuller-Levis, R.E. Gordon, E. Park, K.J. Pendino, and D.L. Laskin, Taurine protects rat bronchioles from acute ozone-induced lung inflammation and hyperplasia Exp. Lung Res 21: 877–888 (1995).

    Article  Google Scholar 

  34. S.R. Kleeberger, D.J. Bassett, G.J. Jakab, and R.C. Levitt, A genetic model for evaluation of susceptibility to ozone-induced inflammation. Am. J. Physiol 258: L313–320 (1990).

    PubMed  CAS  Google Scholar 

  35. C.J. Johnston, B.R. Stripp, S.D. Reynolds, N.E. Avissar, C.K. Reed, and Finkelstein, J.N., Inflammatory and antioxidant gene expression in C57BL/6J mice after lethal and sublethal ozone exposures Exp. Lung Res 25: 81–97 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Q. Zhao, L.G. Simpson, K.E. Driscoll, G.D. Leikauf, Chemokine regulation of ozone-induced neutrophil and monoocyte inflammation Am. J. Physiol 274: L3946 (1998).

    Google Scholar 

  37. H.Y. Cho, J.A. Hotchkiss, C.B. Bennett,and J.R. Harkema, Neutrophil-dependent and neutrophil-independent alterations in the nasal epithelium of ozone-exposed rats Am. J. Respir. Crit. Care Med 162: 629–636 (2000).

    PubMed  CAS  Google Scholar 

  38. R.A. Jones, O. Holz, W. Zachgo, P. Timm, S. Koschyk, B. Muller, F. Grimminger, W. Seeger, F.J. Kelly, C. Dunster, T. Frischer, G. Lubec, M. Waschewski, A. Niendorf,and H. Magnussen, The effect of repeated ozone exposures on inflammatory markers in bronchoalveolar lavage fluid and mucosal biopsies Am. J. Respir. Crit. Care Med 161: 1855–1861 (2000).

    Google Scholar 

  39. R.B. Devlin, W.F. McDonnell, S. Becker, M.C. Madden, M.P. McGee, R. Perez, G. Hatch, D.E. House, and H.S. Koren, Time-dependent changes of inflammatory mediators in the lungs of humans exposed to 0.4 ppm ozone for 2 hr: a comparison of mediators found in bronchoalveolar lavage fluid 1 and 18 hr after exposure Toxicol. Appl. Pharmacol 138: 176–185 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laskin, D.L., Fakhrzadeh, L., Laskin, J.D. (2001). Nitric Oxide and Peroxynitrite in Ozone-Induced Lung Injury. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics