Skip to main content

Right Ventricle Outflow Tract

  • Chapter
  • First Online:
Cardiac CT and MR for Adult Congenital Heart Disease

Abstract

With rapid development in imaging technology, cardiac CT and MR have become the ideal methods for the assessment of complex morphology and function of the conotruncal region including the right ventricle out flow tract (RVOT). Detailed information about the embryology and anatomy of RVOT provides a better understanding of the spectrum of diseases of this region and helps to narrow differential diagnosis of pathologies involving this important structure. This will be discussed first in this chapter. Following to that, the role of CT and MR to evaluate morphology and function in relation to developmental malformation of the RVOT will be reviewed. A spectrum of conotruncal anomalies with abnormally positioned great arteries may arise from a perturbation of RVOT formation. Complications after RVOT surgery in congenital heart disease are common, and many need follow-up imaging for diagnosis and surgical planning. In this regard, the spectrum of diseases, differential diagnosis, and postoperative findings will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field. Development. 2001;128:3179–88.

    PubMed  CAS  Google Scholar 

  2. Kirby ML. Cardiogenic fields and heart tube formation. In: Kirby ML, editor. Cardiac development. 1st ed. Oxford/New York: Oxford University Press; 2007. p. 21–35.

    Google Scholar 

  3. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001;1: 435–40.

    PubMed  CAS  Google Scholar 

  4. Waldo KL, Hutson MR, Ward CC, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol. 2005;281:78–90.

    PubMed  CAS  Google Scholar 

  5. Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK. Septation and separation within the outflow tract of the developing heart. J Anat. 2003;202(4):327–42.

    PubMed  Google Scholar 

  6. Rana MS, Horsten NCA, Tesink-Taekema S, Lamers WH, Moorman AFM, van den Hoff MJB. The trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res. 2007;100:1000–7.

    PubMed  CAS  Google Scholar 

  7. van den Hoff MJB, Moorman AFM, Ruijter JM, et al. Myocardialization of the cardiac outflow tract. Dev Biol. 1999;212:477–90.

    PubMed  Google Scholar 

  8. Waldo KL, Hutson MR, Stadt HA, Zdanowicz M, Zdanowicz J, Kirby ML. Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field. Dev Biol. 2005;281:66–77.

    PubMed  CAS  Google Scholar 

  9. Restivo A, Piacentini G, Placidi S, Saffirio C, Marino B. Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(9):936–43.

    PubMed  Google Scholar 

  10. Bajolle F, Zaffran S, Kelly RG, et al. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res. 2006;98(3):421–8.

    PubMed  CAS  Google Scholar 

  11. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    PubMed  Google Scholar 

  12. Revel MP, Faivre JB, Remy-Jardin M, Delannoy-Deken V, Duhamel A, Remy J. Pulmonary hypertension: ECG-gated 64-section CT angiographic evaluation of new functional parameters as diagnostic criteria. Radiology. 2009;250(2):558–66.

    PubMed  Google Scholar 

  13. Kerl JM, Ravenel JG, Nguyen SA, et al. Right heart: split-bolus injection of diluted contrast medium for visualization at coronary CT angiography. Radiology. 2008;247(2):356–64, 57.

    PubMed  Google Scholar 

  14. Saremi F, Kang J, Rahmanuddin S, Shavelle D. Assessment of post-atrial switch baffle integrity using a modified dual extremity injection cardiac computed tomography angiography technique. Int J Cardiol. 2013;162(2):e25–7.

    PubMed  Google Scholar 

  15. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92 Suppl 1:i2–13.

    PubMed  Google Scholar 

  16. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    PubMed  Google Scholar 

  17. Anderson RH, Jacobs ML. The anatomy of tetralogy of Fallot with pulmonary stenosis. Cardiol Young. 2008;18 Suppl 3:12–21.

    PubMed  Google Scholar 

  18. Bashore TM. Adult congenital heart disease: right ventricular outflow tract lesions. Circulation. 2007;115(14):1933–47.

    PubMed  Google Scholar 

  19. Alva C, Ho SY, Lincoln CR, Rigby ML, Wright A, Anderson RH. The nature of the obstructive muscular bundles in double-chambered right ventricle. J Thorac Cardiovasc Surg. 1999;117(6):1180–9.

    PubMed  CAS  Google Scholar 

  20. Loukas M, Klaassen Z, Tubbs RS, et al. Anatomical observations of the moderator band. Clin Anat. 2010;23(4):443–50.

    PubMed  Google Scholar 

  21. Loukas M, Tubbs RS, Louis Jr RG, et al. An endoscopic and anatomical approach to the septal papillary muscle of the conus. Surg Radiol Anat. 2009;31(9):701–6.

    PubMed  Google Scholar 

  22. Hansen MW, Merchant N. Images in cardiovascular medicine. Vieussens’ ring: combining computed tomography coronary angiography and magnetic resonance imaging in assessing collateral pathways. Circulation. 2006;114(16):e545–6.

    PubMed  Google Scholar 

  23. Saremi F, Goodman G, Wilcox A, Salibian R, Vorobiof G. Coronary artery ostial atresia: diagnosis of conotruncal anastomotic collateral rings using CT angiography. JACC Cardiovasc Imaging. 2011;4(12):1320–3.

    PubMed  Google Scholar 

  24. Li J, Soukias ND, Carvalho JS, Ho SY. Coronary arterial anatomy in tetralogy of Fallot: morphological and clinical correlations. Heart. 1998;80(2): 174–83.

    PubMed  CAS  Google Scholar 

  25. Milo S, Fiegel A, Shem-Tov A, Neufeld HN, Goor DA. Hour-glass deformity of the pulmonary valve: a third type of pulmonary valve stenosis. Br Heart J. 1988;60(2):128–33.

    PubMed  CAS  Google Scholar 

  26. Stamm C, Anderson RH, Ho SY. Clinical anatomy of the normal pulmonary root compared with that in isolated pulmonary valvular stenosis. J Am Coll Cardiol. 1998;31(6):1420–5.

    PubMed  CAS  Google Scholar 

  27. Berdajs D, Lajos P, Zund G, Turina M. The quadricuspid pulmonary valve. Its importance in the Ross procedure. J Thorac Cardiovasc Surg. 2003;125:198–9.

    PubMed  Google Scholar 

  28. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American college of cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008;118:e714–833.

    PubMed  Google Scholar 

  29. Kan JS, White Jr RI, Mitchell SE, Gardner TJ. Percutaneous balloon valvuloplasty: a new method for treating congenital pulmonary valve stenosis. N Engl J Med. 1982;307:510–4.

    Google Scholar 

  30. Kanter KR, Budde JM, Parks WJ, et al. One hundred pulmonary valve replacements in children after relief of right ventricular outflow tract obstruction. Ann Thorac Surg. 2002;73:1801–6.

    PubMed  Google Scholar 

  31. Becker AE, Connor M, Anderson RH. Tetralogy of Fallot: a morphometric and geometric study. Am J Cardiol. 1975;35:402–12.

    PubMed  CAS  Google Scholar 

  32. Howell CE, Ho SY, Anderson RH, Elliott MJ. Variations within the fibrous skeleton and ventricular outflow tracts in tetralogy of Fallot. Ann Thorac Surg. 1990;50:450–7.

    PubMed  CAS  Google Scholar 

  33. Tan JL, Davlouros PA, McCarthy KP, Gatzoulis MA, Ho SY. Intrinsic histological abnormalities of aortic root and ascending aorta in tetralogy of Fallot: evidence of causative mechanism for aortic dilatation and aortopathy. Circulation. 2005;112:961–8.

    PubMed  CAS  Google Scholar 

  34. Bédard E, McCarthy KP, Dimopoulos K, Giannakoulas G, Gatzoulis MA, Ho SY. Structural abnormalities of the pulmonary trunk in tetralogy of Fallot and potential clinical implications: a morphological study. J Am Coll Cardiol. 2009;54(20):1883–90.

    PubMed  Google Scholar 

  35. Ibrahim T, Dennig K, Schwaiger M, Schomig A. Images in cardiovascular medicine: assessment of double chamber right ventricle by magnetic resonance imaging. Circulation. 2002;105:2692–3.

    PubMed  Google Scholar 

  36. Oliver JM, Garrido A, Gonzalez A, et al. Rapid progression of midventricular obstruction in adults with double-chambered right ventricle. J Thorac Cardiovasc Surg. 2003;126:711–7.

    PubMed  Google Scholar 

  37. Hachiro Y, Takagi N, Koyanagi T, Morikawa M, Abe T. Repair of double-chambered right ventricle: surgical results and long-term follow-up. Ann Thorac Surg. 2001;72:1520–2.

    PubMed  CAS  Google Scholar 

  38. Tirilomis T, Friedrich M, Zenker D, Seipelt RG, Schoendube FA, Ruschewski W. Indications for reoperation late after correction of tetralogy of Fallot. Cardiol Young. 2010;20(4):396–401.

    PubMed  Google Scholar 

  39. Shebani SO, McGuirk S, Baghai M, et al. Right ventricular outflow tract reconstruction using Contegra valved conduit: natural history and conduit performance under pressure. Eur J Cardiothorac Surg. 2006;29(3):397–405.

    PubMed  Google Scholar 

  40. Tweddell JS, Pelech AN, Frommelt PC, et al. Factors affecting longevity of homograft valves used in right ventricular outflow tract reconstruction for congenital heart disease. Circulation. 2000;102 Suppl 3:130–5.

    Google Scholar 

  41. Bove T, Demanet H, Wauthy P, et al. Early results of valved bovine jugular vein conduit versus bicuspid homograft for right ventricular outflow tract reconstruction. Ann Thorac Surg. 2002;74:536–41.

    PubMed  Google Scholar 

  42. Oosterhof T, van Straten A, Vliegen HW, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation. 2007;116:545–51.

    PubMed  Google Scholar 

  43. Khambadkone S, Bonhoeffer P. Nonsurgical pulmonary valve replacement: why, when, and how? Catheter Cardiovasc Interv. 2004;62:401–8.

    PubMed  Google Scholar 

  44. Lurz P, Coats L, Khambadkone S, et al. Percutaneous pulmonary valve implantation: impact of evolving technology and learning curve on clinical outcome. Circulation. 2008;117(15):1964–72.

    PubMed  Google Scholar 

  45. Schievano S, Coats L, Migliavacca F, et al. Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J Cardiovasc Magn Reson. 2007;9(4):687–95.

    PubMed  Google Scholar 

  46. Nielsen E, Smerup M, Agger P, et al. Normal right ventricular three-dimensional architecture, as assessed with diffusion tensor magnetic resonance imaging, is preserved during experimentally induced right ventricular hypertrophy. Anat Rec (Hoboken). 2009;292(5):640–51.

    Google Scholar 

  47. Lev M, Bharati S, Meng CCL, Liberthson RR, Paul MH, Idriss F. A concept of double-outlet right ventricle. J Thorac Cardiovasc Surg. 1972;64:271–81.

    PubMed  CAS  Google Scholar 

  48. Walters III HL, Mavroudis C, Tchervenkov CI, Jacobs JP, Lacour-Gayet F, Jacobs ML. Congenital heart surgery nomenclature and database project: double outlet right ventricle. Ann Thorac Surg. 2000;69(4 Suppl):S249–63.

    PubMed  Google Scholar 

  49. Lacour-Gayet F, Maruszewski B, Mavroudis C, Jacobs JP, Elliott MJ. Presentation of the international nomenclature for congenital heart surgery. The long way from nomenclature to collection of validated data at the EACTS. Eur J Cardiothorac Surg. 2000;18:128–35.

    PubMed  CAS  Google Scholar 

  50. Beekmana RP, Roest AA, Helbing WA, et al. Spin echo MRI in the evaluation of hearts with a double outlet right ventricle: usefulness and limitations. Magn Reson Imaging. 2000;18(3):245–53.

    PubMed  CAS  Google Scholar 

  51. Mayo JR, Roberson D, Sommerhoff B, Higgins CB. MR imaging of double outlet right ventricle. J Comput Assist Tomogr. 1990;14(3):336–9.

    PubMed  CAS  Google Scholar 

  52. Chen SJ, Lin MT, Liu KL, et al. Usefulness of 3D reconstructed computed tomography imaging for double outlet right ventricle. J Formos Med Assoc. 2008;107(5):371–80.

    PubMed  Google Scholar 

  53. Artrip JH, Sauer H, Campbell DN, et al. Biventricular repair in double outlet right ventricle: surgical results based on the STS-EACTS International Nomenclature classification. Eur J Cardiothorac Surg. 2006;29(4):545–50.

    PubMed  Google Scholar 

  54. Barbero-Marcial M, Tanamati C, Atik E, Ebaid M. Intraventricular repair of double-outlet right ventricle with noncommitted ventricular septal defect: advantages of multiple patches. J Thorac Cardiovasc Surg. 1999;118:1056–67.

    PubMed  CAS  Google Scholar 

  55. Hornung TS, Derrick GP, Deanfield JE, Redington AN. Transposition complexes in the adult: a changing perspective. Cardiol Clin. 2002;20:405–20.

    PubMed  Google Scholar 

  56. Warnes CA. Transposition of the great arteries. Circulation. 2006;114:2699–709.

    PubMed  Google Scholar 

  57. Paladini D, Volpe P, Sglavo G, et al. Transposition of the great arteries in the fetus: assessment of the spatial relationships of the arterial trunks by four-dimensional echocardiography. Ultrasound Obstet Gynecol. 2008;31(3):271–6.

    PubMed  CAS  Google Scholar 

  58. Yasui H, Nakazawa M, Morishima M, Miyagawa-Tomita S, Momma K. Morphological observations on the pathogenetic process of transposition of the great arteries induced by retinoic acid in mice. Circulation. 1995;91(9):2478–86.

    PubMed  CAS  Google Scholar 

  59. Mee RB. Severe right ventricular failure after Mustard or Senning operation: two-stage repair: pulmonary artery banding and switch. J Thorac Cardiovasc Surg. 1986;92(Pt 1):385–90.

    PubMed  CAS  Google Scholar 

  60. Ebenroth ES, Hurwitz RA, Cordes TM. Late onset of pulmonary hypertension after successful Mustard surgery for d-transposition of the great arteries. Am J Cardiol. 2000;85:127–30.

    PubMed  CAS  Google Scholar 

  61. Jatene AD, Fontes VF, Paulista PP, et al. Anatomic correction of transposition of the great vessels. J Thorac Cardiovasc Surg. 1976;72:364–70.

    PubMed  CAS  Google Scholar 

  62. Blume E, Chung T, Hoffer FA, Geva T. Anatomically corrected malposition of the great arteries {S, D, L}. Circulation. 1998;97:1207.

    PubMed  CAS  Google Scholar 

  63. Allwork SP, Bentall HH, Becker AE, et al. Congenitally corrected transposition of the great arteries: morphologic study of 32 cases. Am J Cardiol. 1976;38:910–23.

    PubMed  CAS  Google Scholar 

  64. Hornung TS, Calder L. Congenitally corrected transposition of the great arteries. Heart. 2010;96:1154–61.

    PubMed  Google Scholar 

  65. Prieto LR, Hordof AJ, Secic M, Rosenbaum MS, Gersony WM. Progressive tricuspid valve disease in patients with congenitally corrected transposition of the great arteries. Circulation. 1998;98:997–1005.

    PubMed  CAS  Google Scholar 

  66. Van Praagh R. Truncus arteriosus: what is it really and how should it be classified? Eur J Cardiothorac Surg. 1987;1:65–70.

    PubMed  Google Scholar 

  67. Calder L, Van Praagh R, Van Praagh S, et al. Truncus arteriosus communis: clinical, angiocardiographic, and pathologic findings in 100 patients. Am Heart J. 1976;92:23–38.

    PubMed  CAS  Google Scholar 

  68. McGoon DC, Rastelli GC, Ongley PA. An operation for the correction of truncus arteriosus. JAMA. 1968;205:69–73.

    PubMed  CAS  Google Scholar 

  69. Vida VL, Sanders SP, Bottio T, et al. Anomalous origin of one pulmonary artery from the ascending aorta. Cardiol Young. 2005;15:176–81.

    PubMed  Google Scholar 

  70. Geva T, Powell AJ, Crawford EC, Chung T, Colan SD. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation. 1998;98(4):339–45.

    PubMed  CAS  Google Scholar 

  71. Nance Jr JW, Bastarrika G, Kang DK, et al. High-temporal resolution dual-energy computed tomography of the heart using a novel hybrid image reconstruction algorithm: initial experience. J Comput Assist Tomogr. 2011;35(1):119–25.

    PubMed  Google Scholar 

  72. Geiger J, Markl M, Jung B, et al. 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol. 2011;21(8):1651–7.

    PubMed  CAS  Google Scholar 

  73. Johansson B, Babu-Narayan SV, Kilner PJ. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J Cardiovasc Magn Reson. 2009;11:1.

    PubMed  Google Scholar 

  74. Sanchez-Quintana D, Anderson RH, Ho SY. Ventricular myoarchitecture in tetralogy of Fallot. Heart. 1996;76:280–6.

    PubMed  CAS  Google Scholar 

  75. Anderson RH, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer PP. The three-dimensional arrangement of the myocytes in the ventricular walls. Clin Anat. 2009;22(1):64–76.

    PubMed  Google Scholar 

  76. Lindqvist P, Henein M, Kazzam E. Right ventricular outflow-tract fractional shortening: an applicable measure of right ventricular systolic function. Eur J Echocardiogr. 2003;4(1):29–35.

    PubMed  CAS  Google Scholar 

  77. Calcutteea A, Chung R, Lindqvist P, Hodson M, Henein MY. Differential right ventricular regional function and the effect of pulmonary hypertension: three-dimensional echo study. Heart. 2011;97(12):1004–11.

    PubMed  Google Scholar 

  78. Denault AY, Chaput M, Couture P, Hébert Y, Haddad F, Tardif JC. Dynamic right ventricular outflow tract obstruction in cardiac surgery. J Thorac Cardiovasc Surg. 2006;132(1):43–9.

    PubMed  Google Scholar 

  79. Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson. 2011;13:9.

    PubMed  Google Scholar 

  80. Bodhey NK, Beerbaum P, Sarikouch S, et al. Functional analysis of the components of the right ventricle in the setting of tetralogy of Fallot. Circ Cardiovasc Imaging. 2008;1(2):141–7.

    PubMed  Google Scholar 

  81. d’Udekem Y, Ovaert C, Grandjean F, et al. Tetralogy of Fallot: transannular and right ventricular patching equally affect late functional status. Circulation. 2000;102(19 Suppl 3):III116–22.

    PubMed  Google Scholar 

  82. Lytrivi ID, Ko HH, Srivastava S, et al. Regional differences in right ventricular systolic function as determined by cine magnetic resonance imaging after infundibulotomy. Am J Cardiol. 2004;94(7):970–3.

    PubMed  Google Scholar 

  83. Wald RM, Redington AN, Pereira A, et al. Refining the assessment of pulmonary regurgitation in adults after tetralogy of Fallot repair: should we be measuring regurgitant fraction or regurgitant volume? Eur Heart J. 2009;30(3):356–61.

    PubMed  Google Scholar 

  84. Harris MA, Whitehead KK, Gillespie MJ, et al. Differential branch pulmonary artery regurgitant fraction is a function of differential pulmonary arterial anatomy and pulmonary vascular resistance. JACC Cardiovasc Imaging. 2011;4(5):506–13.

    PubMed  Google Scholar 

  85. Babu-Narayan SV, Goktekin O, Moon JC, et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111:2091–8.

    PubMed  Google Scholar 

  86. Davlouros PA, Niwa K, Webb G, Gatzoulis MA. The right ventricle in congenital heart disease. Heart. 2006;92(Suppl I):i27–38.

    PubMed  Google Scholar 

  87. Pettersen E, Helle-Valle T, Edvardsen T, et al. Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion. J Am Coll Cardiol. 2007;49:2450–6.

    PubMed  Google Scholar 

  88. Graham Jr TP, Bernard YD, Mellen BG, et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36:255–61.

    PubMed  Google Scholar 

  89. Hauser M, Bengel FM, Hager A, et al. Impaired myocardial blood flow and coronary flow reserve of the anatomical right systemic ventricle in patients with congenitally corrected transposition of the great arteries. Heart. 2003;89:1231–5.

    PubMed  CAS  Google Scholar 

  90. Wald RM, Haber I, Wald R, Valente AM, Powell AJ, Geva T. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation. 2009;119(10):1370–7.

    PubMed  Google Scholar 

  91. Tandri H, Saranathan M, Rodriguez ER, et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol. 2005;45(1):98–103.

    PubMed  Google Scholar 

  92. Boukens BJ, Christoffels VM, Coronel R, Moorman AF. Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. Circ Res. 2009;104(1):19–31.

    PubMed  CAS  Google Scholar 

  93. Harrison DA, Harris L, Siu SC, et al. Sustained ventricular tachycardia in adult patients late after repair of tetralogy of Fallot. J Am Coll Cardiol. 1997;30(5):1368–73.

    PubMed  CAS  Google Scholar 

  94. Globits S, Kreiner G, Frank H, et al. Significance of morphological abnormalities detected by MRI in patients undergoing successful ablation of right ventricular outflow tract tachycardia. Circulation. 1997;96(8):2633–40.

    PubMed  CAS  Google Scholar 

  95. White RD, Trohman RG, Flamm SD, et al. Right ventricular arrhythmia in the absence of arrhythmogenic dysplasia: MR imaging of myocardial abnormalities. Radiology. 1998;207(3):743–51.

    PubMed  CAS  Google Scholar 

  96. Miljoen H, State S, de Chillou C, et al. Electroanatomic mapping characteristics of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Europace. 2005;7(6):516–24.

    PubMed  Google Scholar 

  97. Vaseghi M, Cesario DA, Mahajan A, et al. Catheter ablation of right ventricular outflow tract tachycardia: value of defining coronary anatomy. J Cardiovasc Electrophysiol. 2006;17(6):632–7.

    PubMed  Google Scholar 

  98. Burke AP, Farb A, Tashko G, Virmani R. Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium: are they different diseases? Circulation. 1998;97:1571–80.

    PubMed  CAS  Google Scholar 

  99. Tansey DK, Aly Z, Sheppard MN. Fat in the right ventricle of the normal heart. Histopathology. 2005;46:98–104.

    PubMed  CAS  Google Scholar 

  100. Raney AR, Saremi F, Kenchaiah S, et al. Multidetector computed tomography shows intramyocardial fat deposition. J Cardiovasc Comput Tomogr. 2008;2(3):152–63.

    PubMed  Google Scholar 

  101. Tardif JC, Taylor K, Pandian NG, Schwartz S, Rastegar H. Right ventricular outflow tract and pulmonary artery obstruction by postoperative mediastinal hematoma: delineation by multiplane transesophageal echocardiography. J Am Soc Echocardiogr. 1994;7:400–4.

    PubMed  CAS  Google Scholar 

  102. Stierle U, Sheikhzadeh A, Shakibi JG, Langbehn AF, Diederich KW. Right ventricular obstruction in various types of hypertrophic cardiomyopathy. Jpn Heart J. 1987;28:115–25.

    PubMed  CAS  Google Scholar 

  103. Sirin BH, Kurdal AT, Iskesen I, Cerrahoglu M. Right ventricular outflow obstruction of the patient with biventricular non-compaction. Thorac Cardiovasc Surg. 2010;58(6):364–6.

    PubMed  CAS  Google Scholar 

  104. Ross D. Pulmonary valve autotransplantation (the Ross operation). J Card Surg. 1988;3(Suppl):313–9.

    PubMed  CAS  Google Scholar 

  105. Hraska V, Krajci M, Haun C, et al. Ross and Ross-Konno procedure in children and adolescents: mid-term results. Eur J Cardiothorac Surg. 2004;25(5):742–7.

    PubMed  CAS  Google Scholar 

  106. Bjork VO, Olin CL, Bjarke BB, Thoren CA. Right atrial right ventricular anastomosis for correction of tricuspid atresia. J Thorac Cardiovasc Surg. 1979;77(3):452–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhood Saremi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saremi, F., Ho, S.Y., Sánchez-Quintana, D. (2014). Right Ventricle Outflow Tract. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics