Skip to main content

Adoption of Renewable Energy Technologies: A Fuzzy System Dynamics Perspective

  • Chapter
  • First Online:
Energy Policy Modeling in the 21st Century

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Renewable energy technologies (RETs) are essential for low-carbon energy, environment, and economic systems. The adoption of RETs has been facing a number of barriers and constraints due to the dynamic interaction between potential technology adopters, adopters, imitators, inhibitors, and the technology policies in place. However, the major challenge in modeling RET adoption is the existence of linguistic or fuzzy variables which often confront the decision maker. Linguistic and time-dependent variables lead to uncertainties in the impact of decisions taken. In this connection, the aim of this chapter is to develop a fuzzy system dynamics approach to improve the usefulness of energy policy system models characterized with linguistic variables. Complex dynamic interactions between technology adopters, imitators, inhibitors, policy makers, and energy policies are captured based on systems thinking. Based on a set of input policy parameters and variables, the behavior of RET adoption is investigated. Sensitivity experiments and further “what-if” experiments are conducted in this study. Useful managerial insights are drawn from the simulation results, relevant for policy makers concerned with RETs. Fuzzy logic and system dynamics methodologies are integrated from a systems perspective to model typical RET scenarios. It is anticipated that the methodology will be vital for real-world energy policy design and assessment in the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bass, F.: A new product growth model for consumer durables. Manage. Sci. 15(5), 215–227 (1969)

    Article  MATH  Google Scholar 

  • Barlas, Y.: Formal aspects of model validity and validation in system dynamics. Syst. Dynam. Rev. 12(3), 183–210 (1996)

    Article  Google Scholar 

  • Cavusoglu, H., Hu, N., Li, Y., Ma, D.: Information technology diffusion with influentials, imitators, and opponents. 27(2), 305–334 (2010)

    Google Scholar 

  • Chandrasekara, B., Tara, C.K.: An opinion survey based assessment of renewable energy technology development in India. Renew. Sust. Energ. Rev. 11, 688–701 (2007)

    Article  Google Scholar 

  • Chen, Y.: Understanding technology adoption through system dynamics approach: a case study of RFID technology. Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 366–371 (2011)

    Google Scholar 

  • Chen, F., Duic, N., Alves, L.M., Carvalho, M.G.: Renew islands-renewable energy policies for islands. Renew. Sust. Energ. Rev. 11(8), 1888–1902 (2007)

    Article  Google Scholar 

  • Demiroren, A., Yilmaz, U.: Analysis of change in electric energy cost with using renewable energy sources in Gokceada, Turkey: an island example. Renew. Sust. Ener. Rev. 14, 323–333 (2010)

    Article  Google Scholar 

  • Ernest, F.B., Matthew, A.B.: Feasibility of solar technology (photovoltaic) adoption- a case study on Tennessee’s poultry industry. Renew. Energ. 34, 748–54 (2009)

    Article  Google Scholar 

  • EIA.: Annual Energy Outlook. Government Printing Office, Energy Information Administration. (2009)

    Google Scholar 

  • Forrester, J.: Industrial dynamics. Pegasus Communications, Waltham (1961)

    Google Scholar 

  • Ford, J.W.: System dynamics and the electric power industry. Syst. Dynam. Rev. 13(1), 57–85 (1997)

    Article  Google Scholar 

  • Han, J., Hayashi, Y.: A system dynamics model of CO2 mitigation in China’s inter-city passenger transport. Transport. Res. D.: Tr. E. 13(5), 298–305 (2008)

    Article  Google Scholar 

  • Huang, L.M.: Financing rural renewable energy: a comparison between China and India. Renew. Sust. Energ. Rev. 13(5), 1096–1103 (2009)

    Article  Google Scholar 

  • Jin, W., Xu, L., Yang, Z.: Modeling a policy making framework for urban sustainability: incorporating system dynamics into the ecological footprint. Ecol. Econ. 68(12), 2938–2949 (2009)

    Article  Google Scholar 

  • John, B., Bo, S., William, W.: The economics of sustainable energy for rural development: a study of renewable energy in rural China. Energ. Policy 26, 45–54 (1998)

    Article  Google Scholar 

  • Kikuchi, S.: Study of transportation and uncertainty. Applied research in uncertainty modeling and analysis, vol. 20. In: Attoh-Okine, N.O., Ayyub, B.M. (eds.) pp. 303–319. Springer US. (2005)

    Google Scholar 

  • Kosko, B.: Fuzzy systems as universal fuzzy approximation. In: Proceedings of the first IEEE International Conference on Fuzzy Systems, 1153–1162 (1992a)

    Google Scholar 

  • Kosko, B.: Neural networks and fuzzy systems. Prentice-Hall, Englewood Cliffs (1992b)

    MATH  Google Scholar 

  • Kosko, B.: Fuzzy thinking. Harpner Collins, London (1994)

    Google Scholar 

  • Kosko, B.:Combining fuzzy systems. IEEE FUZZ-95, March, Yokohama, Japan (1995)

    Google Scholar 

  • Krushna, M., Leif, G.: An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden. Energ. Policy 36, 577–9 (2008)

    Article  Google Scholar 

  • Labibi, A.W., Williams, G.B., O’Conor, R.F.: An intelligent maintenance model system: An application of the analytic hierarchy process and a fuzzy logic rule-based controller. J. Oper. Res. Soc. 49, 745–757

    Google Scholar 

  • Levary, R.: Systems dynamics with fuzzy-logic. Int. J. Sys. Sci. 21(8), 1701–1707 (1990)

    Article  Google Scholar 

  • Li, J.F., Zhu, L., Hu, R.Q.: Policy analysis of the barriers to renewable energy development in the People’s Republic of China. Energy Sus. Dev. 6, 11–20 (2009)

    Google Scholar 

  • Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud. 7(1), 1–13 (1975)

    Google Scholar 

  • Meadows, D.H.: Limits to growth: the 30-year update. Chelsea Green Publishing Company, USA (2004)

    Google Scholar 

  • Morecroft, J.D.W.: Strategic modeling and business dynamics: a feedback systems approach. Wiley, Chichester (2007)

    Google Scholar 

  • Mutingi, M. (2012). Dynamic simulation for effective workforce management in new product development. Manag. Sci. Lett. 2, 2571–2580 (2012)

    Article  Google Scholar 

  • Mutingi, M., Mbohwa, C.: Fuzzy system dynamics simulation for manufacturing supply chain systems with uncertain demand CIE42 Proceedings of the International Conference on Computers and Industrial Engineering, South Africa, 1–12 (2012)

    Google Scholar 

  • Mutingi, M., Matope, S.: System dynamics of renewable energy technology adoption. IEEE International Conference on Industrial Technology, South Africa (forthcoming) (2013)

    Google Scholar 

  • Naill, R.: A system dynamics model for national energy policy planning. Sys. Dynam. Rev. 8(1), 1–19 (1992)

    Article  Google Scholar 

  • Peter, W.: Biogas production: current state and perspectives. Appl. Microbiol. Biot. 85, 849–60 (2010)

    Article  Google Scholar 

  • Qudrat-Ullah, H.: MDESRAP: a model for understanding the dynamics of electricity supply, resources, and pollution. Int. J. Glob. Energy. Issue 23(1), 1–4 (2005)

    Article  Google Scholar 

  • Qudrat-Ullah, H., Davidsen, P.I.: Understanding the dynamics of electricity supply, resources and pollution: Pakistan’s case. Energy 26, 595–606 (2001)

    Article  Google Scholar 

  • Qudrat-Ullah, H., Seong, B.S.: How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energ. Policy 38, 2216–2224 (2010)

    Article  Google Scholar 

  • Raja, P., Laurence, D., Vasanthi, M.P.: Adoption of photovoltaic power supply systems: a study of key determinants in India. Renew. Energ. 31, 2272–83 (2006)

    Article  Google Scholar 

  • Reddi, K.R., Moon, Y.B.: System dynamics modeling of engineering change management in a collaborative environment. Int. J. Adv. Manuf. Tech. 55, 1255–1239 (2011)

    Article  Google Scholar 

  • Retortillo, P., Mediavilla, M., Miguel, L.J., Castro, C.: An attempt to automate the analysis of complex system dynamics models: an example of WORLD 3. Proceedings of the 26th International Conference of the System Dynamics Society, Athens, Greece (2008)

    Google Scholar 

  • Rodrigues, L.L.R., Dharmaraj, N.: System dynamics approach for change management in new product development. Manag. Res. News 29(8), 512–523 (2006)

    Article  Google Scholar 

  • Roger, F., Naill, R., Belanger, S., Klinger, A., Petersen, E.: An analysis of the cost effectiveness of U.S. energy policies to mitigate global warming. Sys. Dynam. Rev. 8(2), 111–128 (1990)

    Google Scholar 

  • Rogers, E.: Diffusion of innovation. Free Press, New York (1995)

    Google Scholar 

  • Rogers, E.M.: Diffusion of innovations. Free Press, New York (2003)

    Google Scholar 

  • Saysel, A. K., Barlas, Y.: Model simplification and validation testing. Sys. Dynam. Rev. 22(3), 241–262 (2006)

    Article  Google Scholar 

  • Sterman, J.D.: Business dynamics: systems thinking and modeling for a complex world. Irwin/McGraw-Hill, Boston (2004)

    Google Scholar 

  • Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Pub. Co. (1985)

    Google Scholar 

  • Tessem, B., Davidsen, P.I.: Fuzzy system dynamics: an approach to vague and qualitative variables in simulation. Sys. Dynam. Rev. 10(1), 49–62 (1994)

    Article  Google Scholar 

  • Trappey, A., Trappey, C., Hsiao, C.T., Ou, J., Chang, C.T.: System dynamics modeling of product carbon footprint life cycles for collaborative green supply chains. Int. J. Comp. Integ. M. 25(10), 934–945 (2011)

    Article  Google Scholar 

  • Trappey, A.J.C., Trappey, C., Hsiao, C.T., Ou, J.J.R., Li, S.J., Chen, K.W.P.: An evaluation model for low carbon island policy: the case of Taiwan’s green transportation policy. Energ. Policy 45, 510–515 (2012)

    Article  Google Scholar 

  • Uemura, Y., Kai, T., Natori, R., Takahashi, T., Hatate, Y., Yoshida, M.: Potential of renewable energy sources and its applications in Yakashima Island. Renew. Energ. 29, 581–91 (2003)

    Article  Google Scholar 

  • Van den Bulte, C., Joshi, Y.V.: New product diffusion with influentials and imitators. Market. Sci. 26(3), 400–421 (2007)

    Article  Google Scholar 

  • Vicki, G., Tomas, M.K.: Breaking the cycle producer and consumer perspectives on the non-adoption of passive solar housing in the US. Energ. Policy 36, 551–66 (2008)

    Google Scholar 

  • Wang, J., Lu, H., Peng, H.: System dynamics model of urban transportation system and its application. J. Transport. Sys. Engg. Info. Tech. 8(3), 83–89 (2008)

    Google Scholar 

  • Wong, R., Sheng, S.Y.: Business application of the system dynamics approach: word-of-mouth and its effect in an online environment. Tech. Innov. Manage. Rev. (2012)

    Google Scholar 

  • Zadeh, L.: A fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy. Set. Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mutingi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mutingi, M. (2013). Adoption of Renewable Energy Technologies: A Fuzzy System Dynamics Perspective. In: Qudrat-Ullah, H. (eds) Energy Policy Modeling in the 21st Century. Understanding Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8606-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8606-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8605-3

  • Online ISBN: 978-1-4614-8606-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics