Skip to main content

Genetics and Genomics of Physcomitrella patens

  • Living reference work entry
  • First Online:
Plant Cell Biology

Part of the book series: The Plant Sciences ((PLANTSCI,volume 20))

Abstract

For about a century, spanning the eras of early genetics to state-of-the-art biotechnology, the moss Physcomitrella patens has been a popular object of biological research. Meanwhile it has become an established model organism in plant evolutionary and developmental biology, mainly due to a combination of two factors: its phylogenetic key position in the plant tree of life and the sum of its favorable biological features. As a member of an early diverging land plant lineage – the bryophytes – Physcomitrella fills the gap between other models of the green lineage such as aquatic algae and flowering plants. The advantages of small stature and short generation cycles, accompanied by established and reliable cultivation techniques provide researchers with a robust, relatively fast, and easy cultivation for experiments in a laboratory environment. Precise genome engineering is enabled by the moss’s haploid-dominant lifestyle and its specifically high rate of homologous recombination during DNA repair, that is routinely utilized through an extensive molecular toolkit for efficient gene targeting since 1998. Physcomitrella’s genome was sequenced about a decade ago, making it the first bryophyte and even one of the first plants to be chosen for such a whole-genome shotgun sequencing approach. Ever since, the annotation of this “flagship genome” has been subject to constant improvement by an active community through the internet resource cosmoss.org which provides a central platform for knowledge exchange as well as bioinformatics data and tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen CE. A chromosome difference correlated with sex differences in Sphaerocarpos. Science. 1917;46:466–7.

    Article  CAS  PubMed  Google Scholar 

  • Arif MA, Frank W, Khraiwesh B. Role of RNA interference (RNAi) in the moss Physcomitrella patens. Int J Mol Sci. 2013;14:1516–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton NW, Champagne CEM, Weiler T, Verkoczy LK. The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol. 2000;146:391–402.

    Article  Google Scholar 

  • Axtell MJ. The small RNAs of Physcomitrella patens: expression, function and evolution. In: Knight CD, Perroud P-F, Cove DJ, editors. Annual plant reviews volume 36: the moss Physcomitrella patens. Oxford, UK: Wiley-Blackwell; 2009. p. 113–142.

    Google Scholar 

  • Beike AK, von Stackelberg M, Schallenberg-Rüdinger M, Hanke ST, Follo M, Quandt D, McDaniel SF, Reski R, Tan BC, Rensing SA. Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium-Physcomitrella species complex. BMC Evol Biol. 2014;14:158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beike AK, Lang D, Zimmer AD, Wüst F, Trautmann D, Wiedemann G, Beyer P, Decker EL, Reski R. Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytol. 2015;205:869–81.

    Article  CAS  PubMed  Google Scholar 

  • Coruh C, Cho SH, Shahid S, Liu Q, Wierzbicki A, Axtell MJ. Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway is largely conserved in land plants. Plant Cell. 2015;27:2148–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS. Transformation of the moss Physcomitrella patens using T-DNA mutagenesis. Cold Spring Harb Protoc. 2009; doi:10.1101/pdb.prot5144.

    Google Scholar 

  • Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS. Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss Physcomitrella patens. New Phytol. 2007;176:275–87.

    Article  CAS  PubMed  Google Scholar 

  • Egener T, Granado J, Guitton M-C, Hohe A, Holtorf H, Lucht J, Rensing S, Schlink K, Schulte J, Schween G, Zimmermann S, Duwenig E, Rak B, Reski R. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol. 2002;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel P. The induction of biochemical and morphological mutants in the moss Physcomitrella patens. Am J Bot. 1968;55:438–46.

    Article  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. Nat Rev Genet. 2002;3:329–41.

    Article  CAS  PubMed  Google Scholar 

  • Heitz E. Das Heterochromatin der Moose. I Jahrb Wiss Bot. 1928;69:762–818.

    Google Scholar 

  • Hiss M, Laule O, Meskauskiene RM, Arif MA, Decker EL, Erxleben A, Frank W, Hanke ST, Lang D, Martin A, Neu C, Reski R, Richardt S, Schallenberg-Rüdinger M, Szövényi P, Tiko T, Wiedemann G, Wolf L, Zimmermann P, Rensing SA. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions. Plant J. 2014;79:530–9.

    Article  CAS  PubMed  Google Scholar 

  • Horst NA, Katz A, Pereman I, Decker EL, Ohad N, Reski R. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nature Plant. 2016;2:15209.

    Article  CAS  Google Scholar 

  • Hwang H-W, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science. 2007;315:97–100.

    Article  CAS  PubMed  Google Scholar 

  • Kamisugi Y, von Stackelberg M, Lang D, Care M, Reski R, Rensing SA, Cuming AC. A sequence-anchored genetic linkage map for the moss, Physcomitrella patens. Plant J. 2008;56:855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol. 2008;148:684–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W. Transcriptional control of gene expression by microRNAs. Cell. 2010;140:111–22.

    Article  CAS  PubMed  Google Scholar 

  • Knapp E. Zur Genetik von Sphaerocarpus. Ber Dtsch Bot Ges. 1936;54:58–69.

    Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R. Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci. 2008;13:542–9.

    Article  CAS  PubMed  Google Scholar 

  • Lang D, Weiche B, Timmerhaus G, Richardt S, Riaño-Pachón DM, Corrêa LGG, Reski R, Mueller-Roeber B, Rensing SA. Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol. 2010;2:488–503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, Lang D, Hanke ST, Mueller SJX, Sarnighausen E, Vervliet-Scheebaum M, Reski R. Targeted gene knockouts reveal overlapping functions of the five Physcomitrella patens FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development, and gravity sensing. Mol Plant. 2009;2:1359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDaniel SF, von Stackelberg M, Richardt S, Quatrano RS, Reski R, Rensing SA. The speciation history of the Physcomitrium-Physcomitrella species complex. Evolution. 2010;64:217–31.

    Article  CAS  PubMed  Google Scholar 

  • Nakaoka Y, Miki T, Fujioka R, Uehara R, Tomioka A, Obuse C, Kubo M, Hiwatashi Y, Goshima G. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell. 2012;24:1478–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama T, Hiwatashi Y, Sakakibara I, Kato M, Hasebe M. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res. 2000;7:9–17.

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Murdock AG, Mishler BD, Kuehl JV, Boore JL, Mandoli DF, Everett KDE, Wolf PG, Duffy AM, Karol KG. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. BMC Genomics. 2010;11:143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prigge MJ, Lavy M, Ashton NW, Estelle M. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol. 2010;20:1907–12.

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Rombauts S, Van de Peer Y, Reski R. Moss transcriptome and beyond. Trends Plant Sci. 2002a;7:535–8.

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Rombauts S, Hohe A, Lang D, Duwenig E, Rouze P, Van de Peer Y, Reski R. The transcriptome of the moss Physcomitrella patens: comparative analysis reveals a rich source of new genes. 2002b. http://www.plant-biotech.net/Rensing_et_al_transcriptome2002.pdf. Accessed 26 Aug 2015.

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R. An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol. 2007;7:130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S-I, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu S-H, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science. 2008;319:64–9.

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD. Comparative genomics. In: Knight CD, Perroud P-F, Cove DJ, editors. Annual plant reviews volume 36: the moss Physcomitrella patens. Oxford, UK: Wiley-Blackwell; 2009. p. 42–75.

    Google Scholar 

  • Rensing SA, Beike AK, Lang D. Evolutionary importance of generative polyploidy for genome evolution of haploid-dominant land plants. In: Leitch IJ, Greilhuber J, Dolezel J, Wendel JF, editors. Plant genome diversity, vol. 2. Wien: Springer; 2013. p. 295–305.

    Chapter  Google Scholar 

  • Reski R. Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci. 1998;3:209–10.

    Article  Google Scholar 

  • Reski R, Faust M, Wang X-H, Wehe M, Abel W. Genome analysis of the moss Physcomitrella patens (Hedw.) B.S.G. Mol Gen Genet. 1994;244:352–9.

    Article  CAS  PubMed  Google Scholar 

  • Reski R, Parsons J, Decker EL. Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol J. 2015;13:1191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardt S, Timmerhaus G, Lang D, Qudeimat E, Corrêa LGG, Reski R, Rensing SA, Frank W. Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol. 2010;72:27–45.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer DG, Zryd J-P. Efficient gene targeting in the moss Physcomitrella patens. Plant J. 1997;11:1195–206.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer D, Zryd J-P, Knight CD, Cove DJ. Stable transformation of the moss Physcomitrella patens. Mol Gen Genet. 1991;226:418–24.

    Article  CAS  PubMed  Google Scholar 

  • Schween G, Gorr G, Hohe A, Reski R. Unique tissue-specific cell cycle in Physcomitrella. Plant Biol. 2003;5:50–8.

    Article  Google Scholar 

  • Schween G, Egener T, Fritzowsky D, Granado J, Guitton M-C, Hartmann N, Hohe A, Holtorf H, Lang D, Lucht JM, Reinhard C, Rensing SA, Schlink K, Schulte J, Reski R. Large-scale analysis of 73 329 Physcomitrella plants transformed with different gene disruption libraries: production parameters and mutant phenotypes. Plant Biol. 2005;7:228–37.

    Article  CAS  PubMed  Google Scholar 

  • Stehlin HG. Remarques sur les faunules de mammifères des couches éocènes et oligocènes du Bassin de Paris. B Soc Geol Fr. 1909;9:488–520.

    Google Scholar 

  • Strepp R, Scholz S, Kruse S, Speth V, Reski R. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci. 1998;95:4368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strotbek C, Krinninger S, Frank W. The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function. Int J Dev Biol. 2013;57:553–64.

    Article  CAS  PubMed  Google Scholar 

  • Sugita M, Aoki S. Chloroplasts. In: Knight CD, Perroud P-F, Cove DJ, editors. Annual plant reviews volume 36: the moss Physcomitrella patens. Oxford, UK: Wiley-Blackwell; 2009. p. 182–210.

    Google Scholar 

  • Sugiura C, Sugita M. Plastid transformation reveals that moss tRNA(Arg)-CCG is not essential for plastid function. Plant J. 2004;40:314–21.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res. 2003;31:5324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwara M, Sato N. The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol. 2007;24:699–709.

    Article  CAS  PubMed  Google Scholar 

  • Von Stackelberg M, Rensing SA, Reski R. Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites. BMC Plant Biol. 2006;6:9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Wettstein F. Über plasmatische Vererbung und über das Zusammenwirken von Genen und Plasma. Ber Dtsch Bot Ges. 1928;46:32–49.

    Google Scholar 

  • Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA. The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol. 2010;153:1123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R. Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics. 2013;14:498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Readings

  • Cove, D. The moss Physcomitrella patens. Annu Rev. Genet 2005;39:339–358.

    Article  CAS  PubMed  Google Scholar 

  • Cove DJ, Cuming AC. Genetics and genomics of moss models: physiology enters the twenty-first century. In: Hanson DT, Rice SK, editors. Photosynthesis in bryophytes and early land plants. Dordrecht: Springer; 2013. p. 187–199.

    Google Scholar 

  • Knight C, Perroud PF, Cove D. Annual plant reviews volume 36: the moss Physcomitrella patens. Oxford, UK: Wiley-Blackwell; 2009.

    Google Scholar 

  • Strotbek, C., S. Krinninger, and W. Frank. The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function. Int J Dev Biol 2013;57:553–564.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Reski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

van Gessel, N., Lang, D., Reski, R. (2017). Genetics and Genomics of Physcomitrella patens . In: Assmann, S., Liu, B. (eds) Plant Cell Biology. The Plant Sciences, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7881-2_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7881-2_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7881-2

  • Online ISBN: 978-1-4614-7881-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics