Skip to main content

Integration of Cu–Cl Cycle of Hydrogen Production with Nuclear and Renewable Energy Systems for Better Environment

  • Chapter
  • First Online:
Causes, Impacts and Solutions to Global Warming

Abstract

Process integration opportunities for the Cu–Cl cycle of hydrogen production with nuclear and renewable energy sources are investigated. The advantages and disadvantages of each system are studied, and the cost of hydrogen production is analyzed and compared for various cases. In order to evaluate the environmental performance of the integrated hydrogen production systems, an environmental impact assessment of the proposed systems with a focus on the amount of CO2 emission is conducted and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( \dot{e}x \) :

Exergy content (kJ/kg)

LHV :

Lower heating value (kJ kg−1)

\( \dot{m} \) :

Mass flow rate (kg s−1)

\( \dot{Q} \) :

Heat rate (kW)

T :

Temperature (K)

T 0 :

Reference temperature (K)

\( \dot{W}e \) :

Electric power (kW)

η :

Energy efficiency

ψ :

Exergy efficiency

References

  1. Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Progr Nucl Energy 51:500–525

    Article  Google Scholar 

  2. Orhan MF (2011) Conceptual design, analysis and optimization of nuclear-based hydrogen production via copper-chlorine thermochemical cycles. PhD thesis, FEAS, UOIT, Canada

    Google Scholar 

  3. Hirsch RL, Bezdek R, Wendling R (2005) Peaking of world oil production: impacts, mitigation, and risk management. In Proceedings of the IV International Workshop on Oil and Gas Depletion, pp 19–20

    Google Scholar 

  4. Intergovernmental Panel on Climate Change (2007) Fourth assessment report. United Nations Framework Convention on Climate Change

    Google Scholar 

  5. Schiermeier Q, Tollefson J, Scully T, Witze A, Morton O (2008) Electricity without carbon. Nature 454(7206):816–823

    Article  Google Scholar 

  6. Dincer I, Kanoglu M, Rosen MA (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36:128–137

    Article  Google Scholar 

  7. Strong MF (1992) Energy, environment and development. Energy Policy 20:490–494

    Article  Google Scholar 

  8. Lior N (2008) Energy resources and use: the present situation and possible paths to the future. Energy 33:842–857

    Article  Google Scholar 

  9. Hartly DL (1990) Perspectives on renewable energy and the environment. In: Tester JW, Wood DO, Ferrari NA (eds) Energy and the environment in the 21st century. MIT, Massachusetts

    Google Scholar 

  10. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 4:157–175

    Article  Google Scholar 

  11. International Energy Agency (2009) World energy outlook. Organization of Economic Cooperation and Development

    Google Scholar 

  12. International Energy Agency (2009) Energy technology perspectives. Organization of Economic Cooperation and Development

    Google Scholar 

  13. Aghahosseini S, Dincer I, Naterer GF (2011) Integrated gasification and Cu-Cl cycle for trigeneration of hydrogen, steam and electricity. Int J Hydrogen Energ 36:2845–2854

    Article  Google Scholar 

  14. Lewis Michele A, Masin Joseph G, O’Hare PA (2009) Evaluation of alternative thermochemical cycles, Part I: the methodology. Int J Hydrogen Energ 34(9):4115–4124

    Article  Google Scholar 

  15. Lewis MA, Ferrandon MS, Tatterson DF, Mathias P (2009) Evaluation of alternative thermochemical cycles e Part III further development of the Cu-Cl cycle. Int J Hydrogen Energ 34(9):4136–4145

    Article  Google Scholar 

  16. Naterer G, Suppiah S, Lewis M, Gabriel K, Dincer I, Rosen MA et al (2009) Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle. Int J Hydrogen Energ 34(7):2901–2917

    Article  Google Scholar 

  17. Stolberg L, Boniface H, Suppiah S, York S., Naterer G, Dincer I (2009) (eds.) In: Proceedings of the International conference on hydrogen production. pp. 167, Oshawa, Canada

    Google Scholar 

  18. Sadhankar RR, Li J, Li H, Ryland D, Suppiah S (2005) Hydrogen generation using high-temperature nuclear reactors. In: 55th Canadian chemical engineering conference, Toronto, Ontario, October

    Google Scholar 

  19. Rezaie B, Esmailzadeh E, Dincer I (2011) Renewable energy options for buildings: case studies. Energy Build 43:56–65

    Article  Google Scholar 

  20. Natural resource Canada (2011) Energy efficiency trends in Canada 1990 to 2009, Cat. No. M141-1/2009E-PDF, Canada

    Google Scholar 

  21. Environment Canada (2010) Overview of the reported greenhouse gas emissions 2009, Cat. No. En81-6/1-2009E-PDF, Canada

    Google Scholar 

  22. Evans A, Evans T (2010) Comparing the sustainability parameters of renewable, nuclear and fossil fuel electricity generation technologies. In: World Energy Council for Sustainable Energy, Congress Papers, Montréal, vol. 27. p. 2011

    Google Scholar 

  23. Owen AD (2006) Renewable energy: externality costs as market barriers. Energy Policy 34:632–642

    Article  Google Scholar 

  24. Ansolabehere S, Deutch, J et al (2003) The future of nuclear power, Massachusetts Institute of Technology

    Google Scholar 

  25. International Energy Agency (2006) Geothermal energy annual report 2005

    Google Scholar 

  26. Ito M, Kato K et al (2003) A preliminary study on potential for very large-scale photovoltaic power generation (VLS-PV) system in the Gobi desert from economic and environmental viewpoints. Solar Energy Mater Solar Cells 75(3–4):507–517

    Article  Google Scholar 

  27. Mock JE, Tester JW et al (1997) Geothermal energy from the earth: its potential impact as an environmentally sustainable resource. Annu Rev Energy Environ 22:305–356

    Article  Google Scholar 

  28. Sims REH, Rogner HH et al (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 31(13):1315–1326

    Article  Google Scholar 

  29. Andersson BA, Jacobsson S (2000) Monitoring and assessing technology choice: the case of solar cells. Energy Policy 28(14):1037–1049

    Article  Google Scholar 

  30. Jungbluth N, Bauer C et al (2005) Life cycle assessment for emerging technologies: case studies for photovoltaic and wind power. Int J Life Cycle Assess 10(1):24–34

    Article  Google Scholar 

  31. Fthenakis V, Alsema E (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004-early 2005 status. Progr Photovolt Res Appl 14(3):275–280

    Article  Google Scholar 

  32. Energy Information Agency, E. I. A. (2007) International Energy Outlook 2007, Energy Information Administration

    Google Scholar 

  33. Tripanagnostopoulos Y, Souliotis M et al (2005) Energy, cost and LCA results of PV and hybrid PV/T solar systems. Progr Photovolt Res Appl 13(3):235–250

    Article  Google Scholar 

  34. Dudhani S, Sinha AK et al (2006) Renewable energy sources for peak load demand management in India. Int J Electr Power Energy Syst 28(6):396–400

    Article  Google Scholar 

  35. El-Kordy MN, Badr MA et al (2002) Economical evaluation of electricity generation considering externalities. Renew Energy 25(2):317–328

    Article  Google Scholar 

  36. Pacca S, Horvath A (2002) Greenhouse gas emissions from building and operating electric power plants in the upper Colorado River Basin. Environ Sci Technol 36(14):3194–3200

    Article  Google Scholar 

  37. United Nations Development Program, U. N. D. P. (2000) World energy assessment energy and the challenge of sustainability

    Google Scholar 

  38. Armannsson H, Fridriksson T et al (2005) CO2 emissions from geothermal power plants and natural geothermal activity in Iceland. Geothermics 34(3):286–296

    Article  Google Scholar 

  39. Brown MT, Ulgiati S (2002) Emergy evaluations and environmental loading of electricity production systems. J Cleaner Prod 10(4):321–334

    Article  Google Scholar 

  40. Denholm P, Kulcinski GL et al (2005) Emissions and energy efficiency assessment of baseload wind energy systems. Environ Sci Technol 39(6):1903–1911

    Article  Google Scholar 

  41. Fthenakis VM, Kim HC (2007) Greenhouse-gas emissions from solar electric- and nuclear power: a life-cycle study. Energy Policy 35(4):2549–2557

    Article  Google Scholar 

  42. Kato K, Murata A et al (1997) An evaluation on the life cycle of photovoltaic energy system considering production energy of off-grade silicon. Solar Energy Mater Solar Cells 47(1–4):95–100

    Article  Google Scholar 

  43. Meier P (2002) Life-cycle assessment of electricity generation systems and applications for climate change policy analysis. PhD dissertation, College of Engineering. University of Wisconsin, Madison. p. 161.

    Google Scholar 

  44. Proops JLR, Gay PW et al (1996) The lifetime pollution implications of various types of electricity generation—an input-output analysis. Energy Policy 24(3):229–237

    Article  Google Scholar 

  45. Spadaro J, Langlois L et al (2000) Assessing the difference: greenhouse gas emissions of different electricity generating chains. IAEA Bull 42(2):19–24

    Google Scholar 

  46. Uchiyama Y (2007) Life cycle assessment of renewable energy generation technologies. IEEJ Trans Electr Electron Eng 2(1):44–48

    Article  Google Scholar 

  47. Vattenfall (2004) Summary of Vattenfall AB’s certified environmental product declaration of electricity from the nuclear power plant at Ringhals. Environmental product declaration

    Google Scholar 

  48. Sadhankar RR, Li J, Li H, Ryland DK, Suppiah S (2006) Future hydrogen production using nuclear reactors. Ottawa: Engineering Institute of Canada - Climate Change Technology Conference, May, Canada

    Google Scholar 

  49. Sadhankar RR (2006) Leveraging nuclear research to support hydrogen economy. In: 2nd green energy conference, Oshawa, June, Canada.

    Google Scholar 

  50. Rosen MA, Naterer GF, Sadhankar R, Suppiah S (2006) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor. Quebec: Canadian Hydrogen Association Workshop, October 19–20

    Google Scholar 

  51. Naterer GF et al (2011) Clean hydrogen production with the Cu-Cl cycle - Progress of international consortium. I: Experimental unit operations. Int J Hydrogen Energ. doi:10.1016/ j.ijhydene.2011.08.012

    Google Scholar 

  52. Orhan MF, Dincer I, Naterer GF (2008) Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production‖. Int J Hydrogen Energ 33:6006–6020

    Article  Google Scholar 

  53. Aghahosseini S, Dincer I, Naterer GF (2011) Environmental impact assessment of sustainable hydrogen, steam and electricity trigeneration through integrated gasification and Cu-Cl cycle. Proceedings of the global conference on global warming, Lisbon, Portugal

    Google Scholar 

  54. Chukwu C, Naterer GF, Rosen M (2008) Process simulation of nuclear-produced hydrogen with a Cu-Cl cycle. 29th conference of the Canadian Nuclear Society, Toronto, Ontario, Canada, June 1–4.

    Google Scholar 

  55. Naterer GF, Gabriel K, Wang Z, Daggupati V, Gravelsins R (2008) Thermochemical hydrogen production with a copper-chlorine cycle. I: oxygen release from copper oxychloride decomposition. Int J Hydrogen Energ 33(20):5439–5450

    Article  Google Scholar 

  56. El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools. Academic, San Diego

    Google Scholar 

  57. Linnhoff B, Hindmarsh E (1983) The pinch design method for heat exchanger networks. Chem Eng Sci 38:745–763

    Article  Google Scholar 

  58. Papoulias SA, Grossmann IE (1983) A structural optimization approach in process synthesis II. Heat recovery networks. Comp Chem Eng 7:707–721

    Article  Google Scholar 

  59. Cerda J, Westerberg D, Mason D, Linhoff B (1983) Minimum utility usage in heat-exchanger network synthesis: a transportation problem. Chem Eng Sci 38:373–383

    Article  Google Scholar 

  60. Gundersen T, Naess L (1988) The synthesis of cost optimal heat exchanger networks: an industrial review of the state of the art. Comp Chem Eng 12(6):503–530

    Article  Google Scholar 

  61. Shenoy UV (1995) Heat exchange network synthesis: process optimization by energy and resource analysis. Gulf Publishing Company, Houston

    Google Scholar 

  62. Dunn RF, El-Halwagi MM (1994) Selection of optimal VOC-condensation systems. Waste Manage 14:103–113

    Article  Google Scholar 

  63. Dunn RF, El-Halwagi MM (1994) Optimal design of multi-component VOC-condensation systems. J Hazard Mater 38:187–206

    Article  Google Scholar 

  64. El-Halwagi MM, Srinivas BK, Dunn RF (1995) Synthesis of heatinduced separation networks. Chem Eng Sci 50:81–97

    Article  Google Scholar 

  65. Dunn RF, Zhu M, Srinivas BK, El-Halwagi MM (1995) Optimal design of energy-induced separation systems for VOC recovery. AIChE Symp Ser 90:74–85

    Google Scholar 

  66. Dincer I, Rosen MA (2007) Exergy: energy, environment and sustainable development. Elsevier, Oxford, UK

    Google Scholar 

  67. Kanoglu M (2002) Exergy analysis of a dual-level binary geothermal power plant. Geothermics 31(6):709–724

    Article  Google Scholar 

  68. DiPippo R (2007) Ideal thermal efficiency for geothermal binary plants. Geothermics 36(3):276–285

    Article  Google Scholar 

  69. Zwart RWR, Boerrigter H (2005) High efficiency co-production of synthetic natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomass. Energy Fuel 19(2):591–597

    Article  Google Scholar 

  70. Dickenson R, Biasca F, Schulman B, Johnson H (1997) Refiner options for converting and utilizing heavy fuel oil. Hydrocarbon Process 76(2)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Aghahosseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aghahosseini, S., Dincer, I., Naterer, G.F. (2013). Integration of Cu–Cl Cycle of Hydrogen Production with Nuclear and Renewable Energy Systems for Better Environment. In: Dincer, I., Colpan, C., Kadioglu, F. (eds) Causes, Impacts and Solutions to Global Warming. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7588-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7588-0_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7587-3

  • Online ISBN: 978-1-4614-7588-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics