Skip to main content

Basal Ganglia: Habit Formation

  • Living reference work entry
  • First Online:

Definition

In large part, learning is characterized by the formation of new associations. Habit learning appears to be a form of associative learning that can occur in the absence of awareness of what has been learned. Behaviors that lead to a reward can become habitual with sufficient training. When behaviors are habitual, they can be automatically elicited by antecedent stimuli even when the outcome of the behavior is no longer attractive.

Detailed Description

The Representation of Habits

Fundamentally, habits are associations between stimuli and responses, or S-R associations (Graybiel 2008; Mishkin and Petrie 1984; Packard and Knowlton 2002). For example, when you are confronted with an intersection on your drive to work, this visual stimulus may automatically elicit a left-turn response after years of driving the same route. S-R associations contrast with arbitrary associations between stimuli that we typically think of as declarative learning, such as learning associations...

This is a preview of subscription content, log in via an institution.

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  CAS  PubMed  Google Scholar 

  • Barto A, Sutton R, Anderson C (1983) Neuron-like elements that can solve difficult control problems. IEEE Trans Syst Man Cybern 13

    Google Scholar 

  • Bayley PJ, Frascino JC, Squire LR (2005) Robust habit learning in the absence of awareness and independent of the medial temporal lobe. Nature 436:550–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker JT, Walker JA, Olton DS (1980) Neuroanatomical bases of spatial memory. Brain Res 200:307–320

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Maj R, Mercuri NB, Bernardi G (1992) Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 142:95–99

    Article  CAS  PubMed  Google Scholar 

  • Craik FIM, Govoni R, Naveh-Benjamin M, Anderson ND (1996) The effects of divided attention on encoding and retrieval processes in human memory. J Exp Psychol Gen 125:159–180

    Article  CAS  PubMed  Google Scholar 

  • Devan BD, McDonald RJ, White NM (1999) Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis. Behav Brain Res 100:5–14

    Article  CAS  PubMed  Google Scholar 

  • Dickinson A (1985) Actions and habits: the development of behavioural autonomy. Philos Trans R Soc Lond 308:67–78

    Article  Google Scholar 

  • Dickinson A, Nicholas DJ, Adams CD (1983) The effect of instrumental training schedule on susceptibility of reinforcer devaluation. Q J Exp Psychol 35B:35–35I

    Google Scholar 

  • Eldridge LL, Masterman D, Knowlton BJ (2002) Intact implicit habit learning in Alzheimer’s disease. Behav Neurosci 116:722–726

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems for reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Rev 36:129–138

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ruiz J, Wang J, Aigner TG, Mishkin M (2001) Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc Natl Acad Sci 98:196–201

    Article  Google Scholar 

  • Foerde K, Knowlton BJ, Poldrack RA (2006) Modulation of competing memory systems by distraction. Proc Natl Acad Sci USA 103:11778–11783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foerde K, Poldrack RA, Knowlton BJ (2007) Secondary task effects on classification learning. Mem Cognit 35:864–874

    Article  PubMed  Google Scholar 

  • Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between the frontal cortex and basal ganglia in working memory: a computational model. Cognit Affect Behav Neurosci 1:137–160

    Article  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Graybiel A (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    Article  CAS  PubMed  Google Scholar 

  • Hicks LH (1964) Effects of overtraining on acquisition and reversal of place and response learning. Psychol Rep 15:459–462

    Article  Google Scholar 

  • Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generates and uses neural signals that predict reinforcement. In: Houk JC, Davis J, Beiser D (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge, MA

    Google Scholar 

  • Hull CL (1943) Principles of behavior. Appleton, New York

    Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:451–474

    Article  CAS  PubMed  Google Scholar 

  • Joormann J, Gotlib IH (2008) Updating the contents of working memory in depression: interference from irrelevant negative material. J Abnorm Psychol 117:182–192

    Article  PubMed  Google Scholar 

  • Kerr JND, Wickens JR (2001) Dopamine D1/D5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85:117–124

    CAS  PubMed  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Malamut BL, Saunders RC, Mishkin M (1984) Monkeys with combined amygdalo-hippocampal lesions succeed in object discrimination learning despite 24-hour intertrial intervals. Behav Neurosci 98:759–769

    Article  CAS  PubMed  Google Scholar 

  • McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections linking multiple cortical areas. J Neurosci 22:8117–8132

    CAS  PubMed  Google Scholar 

  • Mishkin M, Petrie HL (1984) Memories and habits: some implications for the analysis of learning and retention. In: Squire LR, Butters N (eds) Neuropsychology of memory. Guilford Press, New York, pp 287–296

    Google Scholar 

  • Mishkin M, Malamut B, Bachevalier J (1984) Memories and habits: two neural systems. In: Lynch G, McGaugh JL, Weinberger NW (eds) Neurobiology of learning and memory. Guilford, New York, pp 65–77

    Google Scholar 

  • Moody TD, Bookheimer SY, Vanek Z, Knowlton BJ (2004) An implicit learning task activates medial temporal lobe in patients with Parkinson’s disease. Behav Neurosci 118:438–442

    Article  PubMed  Google Scholar 

  • Murray EA (2000) Memory for objects in nonhuman primates. In: Gazzaniga M (ed) The cognitive neurosciences, 2nd edn. MIT Press, Cambridge, MA, pp 753–763

    Google Scholar 

  • O’Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the frontal cortex and basal ganglia. Neural Comput 18:283–328

    Article  PubMed  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593

    Article  CAS  PubMed  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72

    Article  CAS  PubMed  Google Scholar 

  • Packard MG, Hirsh R, White NM (1989) Differential effects of fornix and caudate lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci 9:1465–1472

    CAS  PubMed  Google Scholar 

  • Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Creso Moyano J, Myers C, Gluck MA (2001) Interactive memory systems in the human brain. Nature 414:546–550

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward- related learning. Nature 413:67–70

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2007) An attractor network in the hippocampus: theory and neurophysiology. Learn Mem 14:714–731

    Article  PubMed  Google Scholar 

  • Rose EJ, Ebmeier KP (2006) Pattern of impaired working memory during major depression. J Affect Disord 90:149–161

    Article  CAS  PubMed  Google Scholar 

  • Sage JR, Knowlton BJ (2000) Effects of US devaluation on win-stay and win-shift radial maze performance in rats. Behav Neurosci 114:295–306

    Article  CAS  PubMed  Google Scholar 

  • Samuelson KW, Meylan TC, Metzler TJ, Lenoci M, Rothlind J, Henn-Haase C, Choucroun G, Weiner MW, Marmar CR (2006) Neuropsychological functioning in posttraumatic stress disorder and alcohol abuse. Neuropsychology 20:716–726

    Article  PubMed Central  PubMed  Google Scholar 

  • Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shohamy D, Myers CE, Grossman S, Sage J, Gluck MA, Poldrack RA (2004) Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. Brain 127:851–859

    Article  CAS  PubMed  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis of from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Stark CE, Okado Y (2003) Making memories without trying: medial temporal lobe activity associated with incidental memory formation during recognition. J Neurosci 23:6748–6753

    CAS  PubMed  Google Scholar 

  • Tolman EC, Honzik CH (1930) Degrees of hunger, reward, and non-reward, and maze learning in rats. Univ Calif Publ Psychol 4:241–256

    Google Scholar 

  • Tolman EC, Ritchie BF, Kalish D (1946) Studies in spatial learning: I. Orientation and the short-cut. J Exp Psychol 36:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wickens JR, Arbuthnott GW (2005) Structural and functional interactions in the striatum at the receptor level. In: Dunnett SB, Bentovoglio M, Bjorklund A, Hokfelt T (eds) Dopamine, handbook of chemical neuroanatomy, vol 21. Elsevier, Amsterdam, pp 199–236

    Google Scholar 

  • Williams ZM, Eskandar EN (2006) Selective enhancement of associative learning by microstimulation of the anterior caudate. Nat Neurosci 9:562–568

    Article  CAS  PubMed  Google Scholar 

  • Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 312:43–67

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2004) Contributions of striatal subregions to place and response learning. Learn Mem 11:459–463

    Article  PubMed Central  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Knowlton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Knowlton, B. (2014). Basal Ganglia: Habit Formation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_517-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_517-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics