Skip to main content

State-Space Models for the Analysis of Neural Spike Train and Behavioral Data

  • Living reference work entry
  • First Online:
  • 279 Accesses

Definition

An adaptation of the state-space paradigm to the analysis of neuroscience data in which the observation model is either a point process or a time series of binary observations and the state model is typically a linear Gaussian process. The paradigm has been applied to a number of problems including neural spike train decoding, analysis of receptive field dynamics, analyses of learning, neural prosthetic control, and control of brain states under anesthesia.

The state-space paradigm for analyses of point processes and time series of discrete binary observations has been developed for the analysis of neural spike train and behavioral data (Brown et al. 1998; Smith and Brown 2003). The state-space point process (SSPP) paradigm has two standard components. The state equation defines the system dynamics. The observation equation defines how the system is measured. For the SSPP system the observations can be point processes or time series of discrete binary responses. Point...

This is a preview of subscription content, log in via an institution.

References

  • Ahmadian Y, Pillow JW, Paninski L (2011) Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural Comput 23:46–96

    Article  PubMed  Google Scholar 

  • Barbieri R, Brown EN (2006) Analysis of heartbeat dynamics by point process adaptive filtering. IEEE Trans Biomed Eng 53:4–12

    Article  PubMed  Google Scholar 

  • Barbieri R, Frank LM, Nguyen DP et al (2004) Dynamic analyses of information encoding in neural ensembles. Neural Comput 16:277–307

    Article  PubMed  Google Scholar 

  • Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18:7411–7425

    CAS  PubMed  Google Scholar 

  • Brown EN, Nguyen DP, Frank LM, Wilson MA, Solo V (2001) An analysis of neural receptive field plasticity by point process adaptive filtering. Proc Natl Acad Sci U S A 98:12261–12266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chemali J, Ching S, Purdon PL, Solt K, Brown EN (2013) Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression. J Neural Eng 10:056017

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Barbieri R, EN Brown (2010) State-space modeling of neural spike train and neural behavioral data. In: Statistical signal processing for neuroscience: Oweiss. Oxford Press, Amsterdam, pp 161–200

    Google Scholar 

  • Ching S, Liberman MY, Chemali JJ et al (2013) Real-time closed-loop control in a rodent model of medically induced coma using burst suppression. Anesthesiology 119(4):848–860

    Google Scholar 

  • Coleman TP, Yanike M, Suzuki WA, Brown EN (eds) (2010) A mixed filter algorithm for dynamically tracking learning from multiple behavioral and neurophysiological measures. In: Glanzman DL, Ding M (eds) Neuronal variability and its functional significance. Oxford University Press, New York, pp 3–28

    Google Scholar 

  • Eden UT, Frank LM, Barbieri R, Solo V, Brown EN (2004) Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput 16:971–998

    Article  PubMed  Google Scholar 

  • Ergun A, Barbieri R, Eden UT, Wilson MA, Brown EN (2007) Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Trans Biomed Eng 54:419–428

    Article  PubMed  Google Scholar 

  • Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24:7681–7689

    Article  CAS  PubMed  Google Scholar 

  • Prerau MJ, Smith AC, Eden UT, Yanike M, Suzuki WA, Brown EN (2008) A mixed filter algorithm for cognitive state estimation from simultaneously recorded continuous and binary measures of performance. Biol Cybern 99:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prerau MJ, Smith AC, Eden UT et al (2009) Characterizing learning by simultaneous analysis of continuous and binary measures of performance. J Neurophysiol 102:3060–3072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purdon PL, Pierce ET, Mukamel EA et al (2013) Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A 110:E1142–E1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shanechi MM, Hu RC, Powers M, Wornell GW, Brown EN, Williams ZM (2012) Neural population partitioning and a concurrent brain-machine interface for sequential motor function. Nat Neurosci 15:1715–1722

    Article  CAS  PubMed  Google Scholar 

  • Shanechi MM, Wornell GW, Williams ZM, Brown EN (2013a) Feedback-controlled parallel point process filter for estimation of goal-directed movements from neural signals. IEEE Trans Neural Syst Rehabil Eng 21:129–140

    Article  PubMed  Google Scholar 

  • Shanechi MM, Williams ZM, Wornell GW, Hu RC, Powers M, Brown EN (2013b) A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design. PLoS One 8:e59049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shanechi M, Chemali JJ, Liberman M, Solt K, Brown EN (2013) A brain-machine interface for control of medically-induced coma. PLoS Comput Biol: e1003284

    Google Scholar 

  • Shanechi MM, Orsborn A, Gowda S, Carmena JM (2013) Proficient BMI control enabled by closed-loop adaptation of an optimal feedback-controlled point process decoder. In: Translational and computational motor control meeting, San Diego, 8 Nov 2013

    Google Scholar 

  • Shimazaki H, Amari S, Brown EN, Grun S (2012) State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput Biol 8:e1002385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AC, Brown EN (2003) Estimating a state-space model from point process observations. Neural Comput 15:965–991

    Article  PubMed  Google Scholar 

  • Smith AC, Frank LM, Wirth S et al (2004) Dynamic analysis of learning in behavioral experiments. J Neurosci 24:447–461

    Article  CAS  PubMed  Google Scholar 

  • Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 93:1074–1089

    Article  PubMed  Google Scholar 

  • Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Suzuki WA (2003) Single neurons in the monkey hippocampus and learning of new associations. Science 300:1578–1581

    Article  CAS  PubMed  Google Scholar 

  • Wong KF, Smith AC, Pierce ET et al (2014) Statistical modeling of behavioral dynamics during propofol-induced loss of consciousness. J Neurosci Methods 227c: 65–74

    Google Scholar 

  • Yuan K, Girolami M, Niranjan M (2012) Markov chain Monte Carlo methods for state-space models with point process observations. Neural Comput 24:1462–1486

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emery N. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Chen, Z., Brown, E.N. (2014). State-Space Models for the Analysis of Neural Spike Train and Behavioral Data. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_410-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_410-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics