Skip to main content

Flux-Based Site Assessment and Management

  • Chapter
  • First Online:
Chlorinated Solvent Source Zone Remediation

Abstract

Although characterizing dense nonaqueous phase liquid (DNAPL) source zones poses significant challenges, there have been several recent improvements in characterization methods and decision making. One important improvement has been the increased use of mass flux and mass discharge information. This information can be helpful for evaluating risks, assessing the benefits of partial source depletion efforts, estimating natural attenuation rates and refining conceptual site models. Mass flux data also can lead to more cost effective remediation by targeting the areas that provide the most loading to the contaminant plume. This chapter provides an overview of uses of mass flux and mass discharge estimates, and describes the measurement methods that are available. It also provides recommendations for use and discusses the level of resolution needed when measuring mass flux and mass discharge for differing objectives. Finally, the chapter includes case studies of the uses of mass flux and mass discharge information at specific DNAPL sites, highlighting the value of the data in making site management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Annable MD, Hatfield K, Cho J, Klammler H, Parker BL, Cherry JA, Rao PSC. 2005. Field-scale evaluation of the passive flux meter for simultaneous measurement of groundwater and contaminant fluxes. Environ Sci Technol 39:7194–7201.

    Article  CAS  Google Scholar 

  • API (American Petroleum Institute). 2002. Estimating Mass Flux for Decision-Making: An Expert Workshop. American Petroleum Institute, Washington DC.

    Google Scholar 

  • API (American Petroleum Institute). 2003. Groundwater Remediation Strategies Tool. Regulatory Analysis and Scientific Affairs Department. Publication 4730. American Petroleum Institute, Washington DC.

    Google Scholar 

  • Banerjee S. 1984. Solubility of organic mixtures in water. Environ Sci Technol 18:587–591.

    Article  CAS  Google Scholar 

  • Basu NB, Rao PSC, Poyer IC, Annable MD, Hatfield K. 2006. Flux-based assessment at a manufacturing site contaminated with trichloroethylene. J Contam Hydrol 86:105–127.

    Article  CAS  Google Scholar 

  • Basu NB, Fure AD, Jawitz JW. 2008. Simplified contaminant source depletion models as analogs of multiphase simulators. J Contam Hydrol 97:87–99.

    Article  CAS  Google Scholar 

  • Basu NB, Rao PSC, Poyer IC, Nandy S, Mallavarapu M, Naidu R, Davis GB, Patterson BM, Annable MD, Hatfield K. 2009. Integration of traditional and innovative characterization techniques for flux-based assessment of dense non-aqueous phase liquid (DNAPL) sites. J Contam Hydrol 105:161–172.

    Article  CAS  Google Scholar 

  • Béland-Pelletier C, Fraser M, Barker J, Ptak T. 2011. Estimating contaminant mass discharge: A field comparison of the multilevel point measurement and the integral pumping investigation approaches and their uncertainties. J Contam Hydrol 122:63–75.

    Article  CAS  Google Scholar 

  • Bockelmann A, Ptak T, Teutsch G. 2001. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site. J Contam Hydrol 53:429–453.

    Article  CAS  Google Scholar 

  • Bockelmann A, Zamfirescu D, Ptak T, Grathwohl P, Teutsch G. 2003. Quantification of mass fluxes and natural attenuation rates at an industrial site with a limited monitoring network: A case study. J Contam Hydrol 60:97–121.

    Article  CAS  Google Scholar 

  • Brooks MC, Annable MD, Rao PSC, Hatfield K, Jawitz JW, Wise WR, Wood AL, Enfield CG. 2004. Controlled release, blind test of DNAPL remediation by ethanol flushing. J Contam Hydrol 69:281–297.

    Article  CAS  Google Scholar 

  • Brooks MC, Wood AL, Annable MD, Hatfield K, Cho J, Holbert C, Rao PSC, Enfield CG, Lynch K, Smith RE. 2008. Changes in contaminant mass discharge from DNAPL source mass depletion: Evaluation at two field sites. J Contam Hydrol 102:140–153.

    Article  CAS  Google Scholar 

  • Christ JA, Ramsburg CA, Pennell KD, Abriola LM. 2006. Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: An evaluation using multiphase numerical simulations. Water Resour Res 42:W11420, doi:10.1029/2006WR004886.

    Article  Google Scholar 

  • D’Affonseca FM, Blum P, Finkel M, Melzer R, Grathwohl P. 2008. Field scale characterization and modeling of contaminant release from a coal tar source zone. J Contam Hydrol 102:120–139.

    Article  CAS  Google Scholar 

  • Devlin JF, McElwee CD. 2007. Effects of measurement error on horizontal hydraulic gradient estimates. Ground Water 45:62–73.

    Article  CAS  Google Scholar 

  • DiFilippo EL, Brusseau ML. 2008. Relationship between mass-flux reduction and source-zone mass removal: Analysis of field data. J Contam Hydrol 98:22–35.

    Article  CAS  Google Scholar 

  • Einarson MD, Mackay DM. 2001. Predicting impacts of groundwater contamination. Environ Sci Technol 35:66A–73A.

    Article  CAS  Google Scholar 

  • Endo S, Schmidt TC. 2006. Prediction of partitioning between complex organic mixtures and water: Application of polyparameter linear free energy relationships. Environ Sci Technol 40:536–545.

    Article  CAS  Google Scholar 

  • Enfield CG, Wood AL, Brooks MC, Annable MD, Rao PSC. 2005. Design of aquifer remediation extraction systems: (1) Describing hydraulic structure and NAPL architecture using tracers. J Contam Hydrol 81:125–147.

    Article  CAS  Google Scholar 

  • Falta RW. 2008. Methodology for comparing source and plume remediation alternatives. Ground Water 46:272–285.

    Article  CAS  Google Scholar 

  • Falta RW, Rao PSC, Basu N. 2005a. Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response. J Contam Hydrol 78:259–280.

    Article  CAS  Google Scholar 

  • Falta RW, Basu N, Rao PSC. 2005b. Assessing the impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution. J Contam Hydrol 79:45–66.

    Article  CAS  Google Scholar 

  • Fraser M, Barker JF, Butler B, Blaine F, Joseph S, Cooke C. 2008. Natural attenuation of a plume from an emplaced coal tar creosote source over 14 years. J Contam Hydrol 100:101–115.

    Article  CAS  Google Scholar 

  • Fure AD, Jawitz JW, Annable MD. 2006. DNAPL source depletion: Linking architecture and flux response. J Contam Hydrol 85:118–140.

    Article  CAS  Google Scholar 

  • Goltz MN, Huang J, Close ME, Flintoft MJ, Pang L. 2008. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction. J Contam Hydrol 100:127–136.

    Article  CAS  Google Scholar 

  • Goltz MN, Close ME, Yoon H, Huang J, Flintoft MJ, Kim S, Enfield C. 2009. Validation of two innovative methods to measure contaminant mass flux in groundwater. J Contam Hydrol 106:51–61.

    Article  CAS  Google Scholar 

  • Guilbeault MA, Parker BL, Cherry JA. 2005. Mass and flux distributions from DNAPL zones in sandy aquifers. Ground Water 43:70–86.

    Article  CAS  Google Scholar 

  • Hatfield K, Rao PSC, Annable MD, Campbell T. 2002. Device and Method for Measuring Fluid and Solute Fluxes in Flow Systems. U.S. Patent No. 6,402,547 B1. U.S. Patent Office, Washington DC, USA.

    Google Scholar 

  • Hatfield K, Annable MD, Cho J, Rao PSC, Klammler H. 2004. A direct passive method for measuring water and contaminant fluxes in porous media. J Contam Hydrol 75:155–181.

    Article  CAS  Google Scholar 

  • Henderson JK, Falta RW, Freedman DL. 2009. Simulation of the effect of remediation on EDB and 1,2-DCA plumes at sites contaminated by leaded gasoline. J Contam Hydrol 108:29–45.

    Article  CAS  Google Scholar 

  • Illangasekare TH, Ramsey J, Jensen KH, Butts BM. 1995. Experimental study of movement and distribution of dense organic contaminants in heterogeneous aquifers. J Contam Hydrol 20:1–25.

    Article  CAS  Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council). 2003. Assessing the Performance of DNAPL Source Reduction Remedies. Dense Nonaqueous Phase Liquids Team, Washington, DC, USA.

    Google Scholar 

  • ITRC. 2010. Use and Measurement of Mass Flux and Mass Discharge. MASSFLUX-1. Integrated DNAPL Site Strategy Team, Washington, DC, USA.

    Google Scholar 

  • Jawitz JW, Annable MD, Demmy GG, Rao PSC. 2003. Estimating non-aqueous phase liquid spatial variability using partitioning tracer higher temporal moments. Water Resour Res 39:1192, doi:10.1029/2002WR001309.

    Article  Google Scholar 

  • Jawitz JW, Fure AD, Demmy GG, Berglund S, Rao PSC. 2005. Groundwater contaminant flux reduction resulting from nonaqueous phase liquid mass reduction. Water Resour Res 41:W10408.

    Article  CAS  Google Scholar 

  • Kavanaugh MC, Rao PSC, eds. 2003. The DNAPL Remediation Challenge: Is There a Case for Source Depletion? EPA/600/R-03/143. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.

    Google Scholar 

  • King MWG, Barker JF. 1999. Migration and natural fate of a coal tar creosote plume 1. Overview and plume development. J Contam Hydrol 39:249–279.

    Article  CAS  Google Scholar 

  • King MWG, Barker JF, Devlin JF, Butler BJ. 1999. Migration and natural fate of a coal tar creosote plume 2. Mass balance and biodegradation indicators. J Contam Hydrol 39:281–307.

    Article  CAS  Google Scholar 

  • Klammler H, Hatfield K, Annable MD. 2007a. Concepts for measuring horizontal groundwater flow directions using the passive flux meter. Adv Water Resour 30:984–997.

    Article  Google Scholar 

  • Klammler H, Hatfield K, Annable MD, Agyei E, Parker BL, Cherry JA, Rao PSC. 2007b. General analytical treatment of the flow field relevant to the interpretation of passive fluxmeter measurements. Water Resour Res 43:W04407, doi:10.1029/2005WR004718.

    Article  Google Scholar 

  • Klammler H, Hatfield K, Luz JAG, Annable MD, Newman M, Cho J, Peacock A, Stucker V, Ranville J, Cabaniss S, Rao PS. 2012. Contaminant discharge and uncertainty estimates from passive flux meter measurements. Water Resour Res 48:W02512, doi:10.1029/2011WR010535.

  • Kram ML, Keller AA, Rossabi J, Everett LG. 2002. DNAPL characterization methods and approaches, part 2: Cost comparison. Ground Water Monit Remed 22:46–61.

    Article  Google Scholar 

  • Kübert M, Finkel M. 2006. Contaminant mass discharge estimation in groundwater based on multi-level point measurements: A numerical evaluation of expected errors. J Contam Hydrol 84:55–80.

    Article  CAS  Google Scholar 

  • Kueper BH, Redman D, Starr RC, Reitsma S, Mah M. 1993. A field experiment to study the behavior of tetrachloroethylene below the water table: Spatial distribution of residual and pooled DNAPL. Ground Water 31:756–766.

    Article  CAS  Google Scholar 

  • Lane WF, Loehr RC. 1992. Estimating the equilibrium aqueous concentrations of polynuclear aromatic hydrocarbons in complex mixtures. Environ Sci Technol 26:983–990.

    Article  CAS  Google Scholar 

  • Lee LS, Rao PSC, Okuda I. 1992. Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water. Environ Sci Technol 26:2110–2115.

    Article  CAS  Google Scholar 

  • Lemke LD, Abriola LM, Lang JR. 2004. Influence of hydraulic property correlation on predicted dense nonaqueous phase liquid source zone architecture, mass recovery and contaminant flux. Water Resour Res 40:W12417.

    Google Scholar 

  • Li KB, Goovaerts P, Abriola LM. 2007. A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements. Water Resour Res 43:W06436.

    Google Scholar 

  • Mahjoub B, Jayr E, Bayard R, Gourdon R. 2000. Phase partition of organic pollutants between coal tar and water under variable experimental conditions. Water Res 34:3551–3560.

    Article  CAS  Google Scholar 

  • NRC (National Research Council). 2004. Contaminants in the Subsurface: Source Zone Assessment and Remediation. The National Academies Press, Washington DC, USA.

    Google Scholar 

  • Parker JC, Park E. 2004. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. Water Resour Res 40:W05109, doi: 10.1029/2003WR002807.

    Article  Google Scholar 

  • Parker BL, Chapman SW, Guilbeault MA. 2008. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J Contam Hydrol 102:86–104.

    Article  CAS  Google Scholar 

  • Ptak T, Schirmer M, Teutsch G. 2000. Development and performance of a new multilevel groundwater sampling system. In Wickramanayake GB, Gavaskar AR, Kelley ME, Nehring KW, eds, Risk, Regulatory and Monitoring Considerations: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 95–102.

    Google Scholar 

  • Rao PSC, Jawitz JW. 2003. Comment on “Steady state mass transfer from single-component dense nonaqueous phase liquids in uniform flow fields” by Sale TC, McWhorter DB. Water Resour Res 39:1068.

    Article  CAS  Google Scholar 

  • Rao PSC, Jawitz J, Enfield C, Falta R, Annable M, Wood A. 2002. Technology integration for contaminated site remediation: Cleanup goals and performance criteria. In Thornton S, Oswald S, eds, Groundwater Quality 2001 Proceedings, Oxford: IAHS Publication 275, pp 571–578.

    Google Scholar 

  • Rein A, Bauer S, Dietrich P, Beyer C. 2009. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. J Contam Hydrol 108:118–133.

    Article  CAS  Google Scholar 

  • Sale TC, McWhorter DB. 2001. Steady-state mass transfer from single-component dense non-aqueous phase liquids in uniform flow fields. Water Resour Res 37:393–404.

    Article  Google Scholar 

  • Schwede RL, Cirpka OA. 2009. Use of steady-state concentration measurements in geostatistical inversion. Adv Water Resour 32:607–619.

    Article  Google Scholar 

  • Soga K, Page JWE, Illangasekare TH. 2004. A review of NAPL source zone remediation efficiency and the mass flux approach. J Hazard Mater 110:13–27.

    Article  CAS  Google Scholar 

  • Stroo HF, Unger M, Ward CH, Kavanaugh MC, Vogel C, Leeson A, Marqusee JA, Smith BP. 2003. Remediating chlorinated solvent source zones. Environ Sci Technol 37:224A–230A.

    Article  CAS  Google Scholar 

  • Teutsch G, Ptak T, Schwarz R, Holder T. 2000. Ein neus integrales verfahren zur quantifizierung der grundwasserinnission: I. Theoretische grundlagen. Grundwasser 4:170–175.

    Article  Google Scholar 

  • Thomson NR, Fraser MJ, Lamarche C, Barker JF, Forsey SP. 2008. Rebound of a coal tar creosote plume following partial source zone treatment with permanganate. J Contam Hydrol 102:154–171.

    Article  CAS  Google Scholar 

  • Wood AL, Enfield CG, Annable MD, Brooks MC, Rao PSC, Sabatini D, Knox R. 2005. Design of aquifer remediation extraction systems: (2) Estimating site-specific performance and benefits of partial source removal. J Contam Hydrol 81:148–166.

    Article  CAS  Google Scholar 

  • Zhu J, Sykes JF. 2004. Simple screening models of NAPL dissolution in the subsurface. J Contam Hydrol 72:245–258.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The work upon which this chapter is based was supported by the U.S. Environmental Protection Agency (USEPA) through its Office of Research and Development with funding provided by the Strategic Environmental Research and Development Program (SERDP), a collaborative effort involving the USEPA, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). It has not been subjected to Agency review and, therefore, does not necessarily reflect the views of the Agency and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Annable, M.D., Brooks, M.C., Jawitz, J.W., Hatfield, K., Rao, P.S.C., Wood, A.L. (2014). Flux-Based Site Assessment and Management. In: Kueper, B., Stroo, H., Vogel, C., Ward, C. (eds) Chlorinated Solvent Source Zone Remediation. SERDP ESTCP Environmental Remediation Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6922-3_7

Download citation

Publish with us

Policies and ethics