Skip to main content
Book cover

Taurine 8 pp 407–425Cite as

Taurine Regulation of Blood Pressure and Vasoactivity

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 775))

Abstract

Taurine plays an important role in the modulation of cardiovascular function by acting not only within the brain but also within peripheral tissues. We found that IV injection of taurine to male rats caused hypotension and tachycardia. A single injection of taurine significantly lowered the systolic, diastolic, and mean arterial blood pressure in freely moving Long–Evans control rats. We further confirm the vasoactive properties of taurine using isolated aortic ring preparations. Mechanical responses of circular aortic rings to pharmacological agents were measured by an isometric force transducer and amplifier. We found that bath application of taurine to the aortic rings caused vasodilation which was blocked by picrotoxin. Interestingly, picrotoxin alone induced a constriction of the aortic ring in the absence of exogenously added taurine, suggesting a tonic activation of GABAAreceptors by circulating either taurine or GABA. Additionally, we found that the endothelial cells express high levels of taurine transporters and GABAAreceptors. We have previously shown that taurine activates GABAAreceptors and thus we suggest that the functional implication of GABAAreceptor activation is the relaxation of the arterial muscularis, vasodilation, and a decrease in blood pressure. Interestingly however, the effects of acute taurine injection were very different than chronic supplementation of taurine. When rats were supplemented taurine (0.05%, 4 weeks) in their drinking water, taurine has significant hypertensive properties. The increase in blood pressure was observed however only in females; males supplemented with taurine did not show an increase in systolic, diastolic, or mean arterial pressure. In both genders however, taurine supplementation caused a significant tachycardia. Thus, we suggest that acute administration of taurine may be beneficial to lowering blood pressure. However, our data indicate that supplementation of taurine to females caused a significant increase in blood pressure. The effect of taurine supplementation on hypertensive rats remains to be seen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Epi:

Epinephrine

GAD:

Glutamic acid decarboxylase

GABA:

γ-Aminobutyric acid

References

  • Abebe W, Mozaffari MS (2000) Effects of chronic taurine treatment on reactivity of the rat aorta. Aminosan 19:615–623

    CAS  Google Scholar 

  • Abebe W, Mozaffari MS (2003) Taurine depletion alters vascular reactivity in rats. Can J Physiol Pharmacol 81:903–909

    Article  PubMed  CAS  Google Scholar 

  • Boujendar S, Reusens B, Merezak S et al (2002) Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 45:856–866

    Article  PubMed  CAS  Google Scholar 

  • Bowery GN (1993) GABAB receptor pharmacology. Annu Rev Pharmacol 33:109–147

    Article  CAS  Google Scholar 

  • Cherif H, Reusens B, Dahri S et al (1996) Stimulatory effects of taurine on insulin secretion by fetal rat islets cultured in vitro. J Endocrinol 151:501–506

    Article  PubMed  CAS  Google Scholar 

  • Crambes A, Monassier L, Chapleau D, Roegel CJ, Feldman J, Bousquet P (1996) GABAergic and glutaminergic modulation of centrally evoked arrhythmias in rats. Hypertension 27:148–154

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR (1973) Bicuculline, GABA and central inhibition. Proc Aust Assoc Neurol 9:145–153

    PubMed  CAS  Google Scholar 

  • Dahri S, Snoeck A, Reusens-Billen B et al (1991) Islet function in offspring of mothers on low-protein diet during gestation. Diabetes 40(Suppl 2):115–120

    PubMed  CAS  Google Scholar 

  • del Olmo N, Bustamante J, del Rio RM, Soli J (2000) Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area. Brain Res 864:298–307

    Article  PubMed  Google Scholar 

  • Elliott CAK, Hobbiger F (1959) Gamma aminobutyric acid: circulatory and respiratory effects in different species: re-investigation of the anti-strychine action in mice. J Physiol 146:70–84

    PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (2004a) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of Epileptic Seizures through taurine. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine 5 Beginning the 21st Century, Adv Exp Med Biol, Vol 526, Kluwer Press, NewYork, pp 515–525

    Google Scholar 

  • El Idrissi A, Trenkner E (2004b) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  CAS  Google Scholar 

  • Failli P, Fazzini A, Franconi F et al (1992) Taurine antagonizes the increases in intracellular calcium concentration induced by α-adrenergic stimulation in freshly isolated guinea-pig cardiomyocytes. J Mol Cell Cardiol 24:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Félétou M, Vanhoutte PM (2006) Endothelium-derived hyperpolarizing factor where are we now? Arterioscler Thromb Vasc Biol 26:1215–1225

    Article  PubMed  Google Scholar 

  • Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26

    Article  PubMed  CAS  Google Scholar 

  • Franconi F, Giotti A, Manzini S, Martini F, Stendardi I, Zilletti L (1982) The effect of taurine on high potassium- and noradrenaline-induced contraction in rabbit ear artery. Br J Pharmacol 75:605–612

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Sato Y (1984) The antihypertensive effect of taurine in DOCA-salt rats. J Hypertens Suppl 2:S563–S565

    Article  PubMed  CAS  Google Scholar 

  • Fujimura S, Shimakawa H, Tanioka H, Yoshida M, Suzuki KM, Hisa Hand Satoh S (1999) Effect of GABA on noradrenaline release and vasoconstriction induced by renal nerve stimulation in isolated perfused rat kidney. Br J Pharmacol 127:109–114

    Article  PubMed  CAS  Google Scholar 

  • Gelder VMN, Elliott CAK (1958) Disposition of γ-aminobutyric acid administered to mammals. J Neurochem 3:139–143

    Article  Google Scholar 

  • Harada H, Kitazaki K, Tsujino T, Watari Y, Iwata S, Nonaka H, Hayashi T (2000) Oral taurine supplementation prevents the development of ethanol-induced hypertension in rats. Hypertens Res 23:277–284

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1989) Taurine in the central nervous system and the mammalian action actions of taurine. Prog Neurobiol 32:471–533

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992a) The physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992b) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Inoue A, Takahashi H, Lee L-C et al (1988) Retardation of the development of hypertension in DOCA salt rats by tanrine supplement. Cardiovasc Res 22:351–358

    Article  PubMed  CAS  Google Scholar 

  • Kwan YW, Ngan MP, Tsang KY, Lee HM, Chu LA (1996) Presynaptic modulation byl-glutamate and GABA of sympathetic co-transmission in rat isolated vas deferens. Br J Pharmacol 118:755–761

    Article  PubMed  CAS  Google Scholar 

  • Li N, Sawamura M, Nara Y, Ikeda K, Yamori Y (1996) Direct inhibitory effects of taurine on norepinephrine-induced contraction in mesenteric artery of stroke-prone spontaneously hypertensive rats. Adv Exp Med Biol 403:257–262

    PubMed  CAS  Google Scholar 

  • Lobo MV, Alonso FJ, Latorre A, del Río RM (2001) Immunohistochemical localization of taurine in the rat ovary, oviduct, and uterus. J Histochem Cytochem 49(9):1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Lombardini JB (1985) Effects of taurine on calcium ion uptake and protein phosphorylation in rat retinal membrane preparations. J Neurochem 45:268–275

    Article  PubMed  CAS  Google Scholar 

  • Lourenco R, Camilo ME (2002) Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp 17:262–270

    PubMed  CAS  Google Scholar 

  • Manzini S, Maggi CA, Meli A (1985) Inhibitory effect of GABA on sympathetic neurotransmission in rabbit ear artery. Arch Int Pharmacodyn Ther 273:100–109

    PubMed  CAS  Google Scholar 

  • Meldrum MJ, Tu R, Patterson T et al (1994) The effect of taurine on blood pressure, and urinary sodium, potassium and calcium excretion. In: Huxtable R, Michalk DV (eds) Taurine in health and disease. Plenum Press, New York, pp 207–215

    Google Scholar 

  • Mellor JR, Gunthorpe MJ, Randall AD (2000) The taurine uptake inhibitor guanidinoethyl sulphonate is an agonist at gamma-aminobutyric acid (A) receptors in cultured murine cerebellar granule cells. Neurosci Lett 286:25–28

    Article  PubMed  CAS  Google Scholar 

  • Merezak S, Hardikar AA, Yajnik CS et al (2001) Intrauterine low protein diet increases fetal beta-cell sensitivity to no and il-1 beta: The protective role of taurine. J Endocrinol 171:299–308

    Article  PubMed  CAS  Google Scholar 

  • Militante JD, Lombardini JB (1998) Pharmacological characterization of the effects of taurine on calcium uptake in the rat retina. Amino Acids 15:99–108

    Article  PubMed  CAS  Google Scholar 

  • Monasterolo AL, Trumper L, Elias MM (1996) Effects of γ-aminobutyric acid agonists on the isolated perfused rat kidney. J Pharmacol Exp Ther 279:602–607

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Takeda K, Yoshitomi T et al (1994) Antihypertensive effect of taurine on salt-induced hypertension. In: Huxtable R, Michalk DV (eds) Taurine in health and disease. Plenum Press, New York, pp 197–206

    Google Scholar 

  • Nara Y, Yamori Y, Lovenberg W (1978) Effect of dietary taurine on blood pressure in spontaneously hypertensive rats. Biochem Pharmacol 27:2689–2692

    Article  PubMed  CAS  Google Scholar 

  • Persson B, Henning M (1980) Central cardiovascular and biochemical effects of baclofen in the conscious rat. J Pharm Pharmacol 32:417–422

    Article  PubMed  CAS  Google Scholar 

  • Quinn MR, Harris CL (1995) Tautine allosterically inhibits binding of [35S]-tbutylbicyclophosphorothionate (TBPS) to rat brain synaptic membranes. Neuropharmacol 34:1607–1613

    Article  CAS  Google Scholar 

  • Ristori MT, Verdetti J (1991) Effects of taurine on rat aorta in vitro. Fundam Clin Pharmacol 5:245–258

    Article  PubMed  CAS  Google Scholar 

  • Roberts E, Lowe IP, Guth L, Jelinek B (1958) Distribution of γ-aminobutyric acid and other amino acids in nervous tissue of various species. J Exp Zool 138(2):313–328

    Article  Google Scholar 

  • Saransaari P, Oja SS (2000) Taurine and neural cell damage. Amino Acids 19:509–526

    Article  PubMed  CAS  Google Scholar 

  • Schaffer S, Takahashi K, Azuma J (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    Article  PubMed  CAS  Google Scholar 

  • Solis JM, Herranz AS, Herreras O et al (1988) Does taurine act as an osmoregulatory substance in the rat brain? Neurosci Lett 91:53–58

    Article  PubMed  CAS  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    PubMed  CAS  Google Scholar 

  • Takahashi H, Tiba M, Iino M, Takayasu T (1955) The effect of gamma-aminobutyric acid on blood pressure. Jpn J Physiol 5(4):334–341

    Article  PubMed  CAS  Google Scholar 

  • Tsukada Y, Hirano S, Nagata Y, Mastutani T (1960) Metabolic studies of gamma-aminobutyric acid in mammalian tissues. In: Roberts E (ed) Inhibition in the nervous system and gamma-aminobutyric acid. Pergamon, New York, NY, p 163

    Google Scholar 

  • Wu JY, Tang XW, Schloss JV, Faiman MD (1998) Regulation of taurine biosynthesis and its physiological significance in the brain. Adv Exp Med Biol 442:339–345

    PubMed  CAS  Google Scholar 

  • Wang DS, Xu TL, Pang ZP, Li JS, Akaike N (1998) Taurine-activated chloride currents in the rat sacral dorsal commissural neurons. Brain Res 792:41–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a fellowship to E.O. from CUNY Summer Undergraduate Research Program (C-SURP) and CSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslem El Idrissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Idrissi, A.E., Okeke, E., Yan, X., Sidime, F., Neuwirth, L.S. (2013). Taurine Regulation of Blood Pressure and Vasoactivity. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 775. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6130-2_31

Download citation

Publish with us

Policies and ethics