Skip to main content

Hypoxia-Mediated Metastasis

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 772))

Abstract

Metastasis is responsible for more than 90 % of deaths among cancer patient. It is a highly complex process that involves the interplay between cancer cells, the tumor microenvironment, and even noncancerous host cells. Metastasis can be seen as a step-wise process: acquisition of malignant phenotype, invasion into surrounding tissue, intravasation into blood vessels, survival in circulation, extravasation to distant sites, and colonization of new organs. Before the actual metastatic process, the secondary site is also prepared for the arrival of the cancer cells through formation of “premetastatic niches.” Hypoxia (low oxygen tension) is commonly found in solid tumors more than a few millimeters cubed and often is associated with a poor prognosis. Hypoxia increases angiogenesis, cancer cell survival, and metastasis. This chapter described how hypoxia regulates each step of the metastatic process and how blocking hypoxia-driven metastasis through targeting hypoxia-inducible factor 1, or downstream effector molecules such as the lysyl oxidase family may represent highly effective preventive strategies against metastasis in cancer patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466

    PubMed  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    PubMed  CAS  Google Scholar 

  • Alix-Panabieres C, Riethdorf S, Pantel K (2008) Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res: Off J Am Assoc Cancer Res 14:5013–5021

    CAS  Google Scholar 

  • Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102

    PubMed  CAS  Google Scholar 

  • Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57:25–40

    PubMed  CAS  Google Scholar 

  • Ara T, Declerck YA (2010) Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46:1223–1231

    PubMed  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    PubMed  CAS  Google Scholar 

  • Baker AM, Cox TR, Bird D, Lang G, Murray GI, Sun XF et al (2011) The role of lysyl oxidase in SRC-dependent proliferation and metastasis of colorectal cancer. J Natl Cancer Inst 103:407–424

    PubMed  CAS  Google Scholar 

  • Baker AM, Bird D, Welti JC, Gourlaouen M, Lang G, Murray GI et al (2012) Lysyl oxidase plays a critical role in endothelial cell stimulation to drive tumor angiogenesis. Cancer Res 73(2):583–594

    Google Scholar 

  • Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M et al (2011) LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 71:1561–1572

    PubMed  CAS  Google Scholar 

  • Barker HE, Cox TR, Erler JT (2012) The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12:540–552

    PubMed  CAS  Google Scholar 

  • Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M et al (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16:1009–1017

    PubMed  CAS  Google Scholar 

  • Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA et al (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65:11001–11009

    PubMed  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumor-associated macrophages in tumor progression: implications for new anticancer therapies. J Pathol 196:254–265

    PubMed  CAS  Google Scholar 

  • Birch M, Mitchell S, Hart IR (1991) Isolation and characterization of human melanoma cell variants expressing high and low levels of CD44. Cancer Res 51:6660–6667

    PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    PubMed  CAS  Google Scholar 

  • Buchler P, Reber HA, Lavey RS, Tomlinson J, Buchler MW, Friess H et al (2004) Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J Surg Res 120:295–303

    PubMed  Google Scholar 

  • Burstein HJ, Elias AD, Rugo HS, Cobleigh MA, Wolff AC, Eisenberg PD et al (2008) Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol: Off J Am Soc Clin Oncol 26:1810–1816

    CAS  Google Scholar 

  • Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903–8908

    PubMed  CAS  Google Scholar 

  • Cairns RA, Khokha R, Hill RP (2003) Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3:659–671

    PubMed  CAS  Google Scholar 

  • Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    PubMed  CAS  Google Scholar 

  • Chambers AF, MacDonald IC, Schmidt EE, Koop S, Morris VL, Khokha R et al (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301

    PubMed  CAS  Google Scholar 

  • Chaudary N, Hill RP (2007) Hypoxia and metastasis. Clin Cancer Res 13:1947–1949

    PubMed  CAS  Google Scholar 

  • Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    PubMed  CAS  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumors. Nat Rev Cancer 3:921–930

    PubMed  CAS  Google Scholar 

  • Cox TR, Bird D, Baker AM, Barker HE, Ho MW, Lang G et al (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73(6):1721–1732

    PubMed  CAS  Google Scholar 

  • Crawford Y, Ferrara N (2009) VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 335:261–269

    PubMed  CAS  Google Scholar 

  • Davidson B, Goldberg I, Gotlieb WH, Lerner-Geva L, Ben-Baruch G, Agulansky L et al (1999) Macrophage infiltration and angiogenesis in cervical squamous cell carcinoma–clinicopathologic correlation. Acta Obstet Gynecol Scand 78:240–244

    PubMed  CAS  Google Scholar 

  • De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nature reviews. Clin Oncol 8:393–404

    Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    PubMed  CAS  Google Scholar 

  • El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM et al (2012) Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci U S A 109:17460–17465

    PubMed  CAS  Google Scholar 

  • el-Sabban ME, Pauli BU (1994) Adhesion-mediated gap junctional communication between lung-metastatatic cancer cells and endothelium. Invasion Metast 14:164–176

    CAS  Google Scholar 

  • Engleman VW, Nickols GA, Ross FP, Horton MA, Griggs DW, Settle SL et al (1997) A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Investig 99:2284–2292

    PubMed  CAS  Google Scholar 

  • Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147

    PubMed  CAS  Google Scholar 

  • Erler JT, Giaccia AJ (2006) Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66:10238–10241

    PubMed  CAS  Google Scholar 

  • Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C et al (2004) Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 24:2875–2889

    PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    PubMed  CAS  Google Scholar 

  • Falanga V, Qian SW, Danielpour D, Katz MH, Roberts AB, Sporn MB (1991) Hypoxia upregulates the synthesis of TGF-beta 1 by human dermal fibroblasts. J Investig Dermatol 97:634–637

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Bucana C (1977) Mechanism of tumor cell resistance to lysis by syngeneic lymphocytes. Cancer Res 37:3945–3956

    PubMed  CAS  Google Scholar 

  • Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285–293

    PubMed  CAS  Google Scholar 

  • Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16:167–179

    PubMed  CAS  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    PubMed  CAS  Google Scholar 

  • Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68:7247–7249

    PubMed  CAS  Google Scholar 

  • Friedrichs K, Franke F, Lisboa BW, Kugler G, Gille I, Terpe HJ et al (1995) CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res 55:5424–5433

    PubMed  CAS  Google Scholar 

  • Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626

    PubMed  CAS  Google Scholar 

  • Funasaka T, Raz A (2007) The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev 26:725–735

    PubMed  Google Scholar 

  • Fyles A, Milosevic M, Hedley D, Pintilie M, Levin W, Manchul L et al (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol: Off J Am Soc Clin Oncol 20:680–687

    CAS  Google Scholar 

  • Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    PubMed  CAS  Google Scholar 

  • Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198

    PubMed  CAS  Google Scholar 

  • Gasic GJ (1984) Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev 3:99–114

    PubMed  CAS  Google Scholar 

  • Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757

    PubMed  CAS  Google Scholar 

  • Goede V, Brogelli L, Ziche M, Augustin HG (1999) Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82:765–770

    PubMed  CAS  Google Scholar 

  • Gorges TM, Pantel K (2013) Circulating tumor cells as therapy-related biomarkers in cancer patients. Cancer Immunol Immunother. 2013 May;62(5):931–9

    Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91

    PubMed  CAS  Google Scholar 

  • Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    PubMed  CAS  Google Scholar 

  • Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770

    PubMed  CAS  Google Scholar 

  • Halvorson KG, Sevcik MA, Ghilardi JR, Rosol TJ, Mantyh PW (2006) Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer. Clin J Pain 22:587–600

    PubMed  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia–a key regulatory factor in tumor growth. Nat Rev Cancer 2:38–47

    PubMed  CAS  Google Scholar 

  • Higgins DF, Biju MP, Akai Y, Wutz A, Johnson RS, Haase VH (2004) Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Ren Physiol 287:F1223–F1232

    CAS  Google Scholar 

  • Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B et al (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Investig 117:3810–3820

    PubMed  CAS  Google Scholar 

  • Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300

    PubMed  CAS  Google Scholar 

  • Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumor-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    PubMed  CAS  Google Scholar 

  • Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    PubMed  CAS  Google Scholar 

  • Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    PubMed  CAS  Google Scholar 

  • Horak CE, Lee JH, Marshall JC, Shreeve SM, Steeg PS (2008) The role of metastasis suppressor genes in metastatic dormancy. APMIS 116:586–601

    PubMed  CAS  Google Scholar 

  • Ide T, Kitajima Y, Miyoshi A, Ohtsuka T, Mitsuno M, Ohtaka K et al (2006) Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 119:2750–2759

    PubMed  CAS  Google Scholar 

  • Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163:1437–1447

    PubMed  CAS  Google Scholar 

  • Ito S, Nakanishi H, Ikehara Y, Kato T, Kasai Y, Ito K et al (2001) Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. Int J Cancer 93:212–217

    PubMed  CAS  Google Scholar 

  • Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S et al (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101:293–299

    PubMed  CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    PubMed  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    PubMed  CAS  Google Scholar 

  • Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    PubMed  CAS  Google Scholar 

  • Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A 95:9325–9330

    PubMed  CAS  Google Scholar 

  • Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–1143

    PubMed  CAS  Google Scholar 

  • Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66:2725–2731

    PubMed  CAS  Google Scholar 

  • Laderoute KR, Alarcon RM, Brody MD, Calaoagan JM, Chen EY, Knapp AM et al (2000) Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res 6:2941–2950

    PubMed  CAS  Google Scholar 

  • Le QT, Denko NC, Giaccia AJ (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23:293–310

    PubMed  CAS  Google Scholar 

  • Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5284

    PubMed  CAS  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    PubMed  CAS  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    PubMed  CAS  Google Scholar 

  • Liotta LA, Stetler-Stevenson WG (1991) Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 51:5054s–5059s

    PubMed  CAS  Google Scholar 

  • Liu YL, Yu JM, Song XR, Wang XW, Xing LG, Gao BB (2006) Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 5:1320–1326

    PubMed  CAS  Google Scholar 

  • Loayza-Puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M (2010) Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene 29:2638–2648

    PubMed  CAS  Google Scholar 

  • Lu X, Yan CH, Yuan M, Wei Y, Hu G, Kang Y (2010) In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res 70:3905–3914

    PubMed  CAS  Google Scholar 

  • Madsen CD, Sahai E (2010) Cancer dissemination–lessons from leukocytes. Dev Cell 19:13–26

    PubMed  CAS  Google Scholar 

  • Maegdefrau U, Amann T, Winklmeier A, Braig S, Schubert T, Weiss TS et al (2009) Bone morphogenetic protein 4 is induced in hepatocellular carcinoma by hypoxia and promotes tumor progression. J Pathol 218:520–529

    PubMed  CAS  Google Scholar 

  • Mannori G, Santoro D, Carter L, Corless C, Nelson RM, Bevilacqua MP (1997) Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am J Pathol 151:233–243

    PubMed  CAS  Google Scholar 

  • Martens LK, Kirschner KM, Warnecke C, Scholz H (2007) Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. J Biol Chem 282:14379–14388

    PubMed  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J et al (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9:3515–3533

    PubMed  CAS  Google Scholar 

  • Moreno-Bueno G, Salvador F, Martin A, Floristan A, Cuevas EP, Santos V et al (2011) Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol Med 3:528–544

    PubMed  CAS  Google Scholar 

  • Morris VL, Koop S, MacDonald IC, Schmidt EE, Grattan M, Percy D et al (1994) Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin Exp Metastasis 12:357–367

    PubMed  CAS  Google Scholar 

  • Moserle L, Amadori A, Indraccolo S (2009) The angiogenic switch: implications in the regulation of tumor dormancy. Curr Mol Med 9:935–941

    PubMed  CAS  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    PubMed  CAS  Google Scholar 

  • Murdoch C (2000) CXCR4: chemokine receptor extraordinaire. Immunol Rev 177:175–184

    PubMed  CAS  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    PubMed  CAS  Google Scholar 

  • Nash GF, Turner LF, Scully MF, Kakkar AK (2002) Platelets and cancer. Lancet Oncol 3:425–430

    PubMed  CAS  Google Scholar 

  • Naumov GN, Wilson SM, MacDonald IC, Schmidt EE, Morris VL, Groom AC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112(Pt 12):1835–1842

    PubMed  CAS  Google Scholar 

  • Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    PubMed  CAS  Google Scholar 

  • Nicolson GL (1988) Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 948:175–224

    PubMed  CAS  Google Scholar 

  • Nicolson GL (1989) Metastatic tumor cell interactions with endothelium, basement membrane and tissue. Curr Opin Cell Biol 1:1009–1019

    PubMed  CAS  Google Scholar 

  • Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558

    PubMed  CAS  Google Scholar 

  • Nozawa K, Fujishiro M, Kawasaki M, Kaneko H, Iwabuchi K, Yanagida M et al (2009) Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthr Res Ther 11:R174

    Google Scholar 

  • Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P et al (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37:674–685

    PubMed  CAS  Google Scholar 

  • Osusky KL, Hallahan DE, Fu A, Ye F, Shyr Y, Geng L (2004) The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis 7:225–233

    PubMed  CAS  Google Scholar 

  • Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6:10–21

    PubMed  Google Scholar 

  • Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    PubMed  CAS  Google Scholar 

  • Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  • Pantel K, Alix-Panabieres C (2010) Circulating tumor cells in cancer patients: challenges and perspectives. Trends Mol Med 16:398–406

    PubMed  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    PubMed  CAS  Google Scholar 

  • Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S et al (2005) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24:3446–3458

    PubMed  CAS  Google Scholar 

  • Peinado H, Moreno-Bueno G, Hardisson D, Perez-Gomez E, Santos V, Mendiola M et al (2008) Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res 68:4541–4550

    PubMed  CAS  Google Scholar 

  • Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146

    PubMed  CAS  Google Scholar 

  • Peng L, Ran YL, Hu H, Yu L, Liu Q, Zhou Z et al (2009) Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30:1660–1669

    PubMed  CAS  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    PubMed  Google Scholar 

  • Petit I, Jin D, Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28:299–307

    PubMed  CAS  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumor regression. Nature 441:437–443

    PubMed  CAS  Google Scholar 

  • Psaila B, Kaplan RN, Port ER, Lyden D (2006) Priming the ‘soil’ for breast cancer metastasis: the pre-metastatic niche. Breast Dis 26:65–74

    PubMed  CAS  Google Scholar 

  • Qing G, Simon MC (2009) Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev 19:60–66

    PubMed  CAS  Google Scholar 

  • Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15:678–685

    PubMed  CAS  Google Scholar 

  • Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757

    PubMed  CAS  Google Scholar 

  • Rohwer N, Welzel M, Daskalow K, Pfander D, Wiedenmann B, Detjen K et al (2008) Hypoxia-inducible factor 1alpha mediates anoikis resistance via suppression of alpha5 integrin. Cancer Res 68:10113–10120

    PubMed  CAS  Google Scholar 

  • Ruan K, Song G, Ouyang G (2009) Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 107:1053–1062

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (1994) Fibronectin and its alpha 5 beta 1 integrin receptor in malignancy. Invasion Metastasis 14:87–97

    PubMed  CAS  Google Scholar 

  • Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7:737–749

    PubMed  CAS  Google Scholar 

  • Salvesen HB, Akslen LA (1999) Significance of tumor-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumor angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 84:538–543

    PubMed  CAS  Google Scholar 

  • Schietke R, Warnecke C, Wacker I, Schodel J, Mole DR, Campean V et al (2010) The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem 285:6658–6669

    PubMed  CAS  Google Scholar 

  • Schluter K, Gassmann P, Enns A, Korb T, Hemping-Bovenkerk A, Holzen J et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169:1064–1073

    PubMed  Google Scholar 

  • Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR (2001) Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res 61:4961–4965

    PubMed  CAS  Google Scholar 

  • Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S et al (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62:5930–5938

    PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    PubMed  CAS  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    PubMed  CAS  Google Scholar 

  • Shyu KG, Hsu FL, Wang MJ, Wang BW, Lin S (2007) Hypoxia-inducible factor 1alpha regulates lung adenocarcinoma cell invasion. Exp Cell Res 313:1181–1191

    PubMed  CAS  Google Scholar 

  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumor suppressor pVHL. Nature 425:307–311

    PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    PubMed  CAS  Google Scholar 

  • Sullivan R, Graham CH (2007) Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 26:319–331

    PubMed  CAS  Google Scholar 

  • Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 16:2927–2931

    CAS  Google Scholar 

  • Terranova VP, Williams JE, Liotta LA, Martin GR (1984) Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science 226:982–985

    PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    PubMed  CAS  Google Scholar 

  • Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–736

    PubMed  CAS  Google Scholar 

  • Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M et al (2008) Intrinsic markers of tumor hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol 9:342–351

    PubMed  Google Scholar 

  • Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V et al (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941

    PubMed  CAS  Google Scholar 

  • Weiss L, Orr FW, Honn KV (1988) Interactions of cancer cells with the microvasculature during metastasis. FASEB J: Off Publ Fed Am Soc Exp Biol 2:12–21

    CAS  Google Scholar 

  • Welti JC, Powles T, Foo S, Gourlaouen M, Preece N, Foster J et al (2012) Contrasting effects of sunitinib within in vivo models of metastasis. Angiogenesis 15:623–641

    PubMed  CAS  Google Scholar 

  • Whelan KA, Caldwell SA, Shahriari KS, Jackson SR, Franchetti LD, Johannes GJ et al (2010) Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis. Mol Biol Cell 21:3829–3837

    PubMed  CAS  Google Scholar 

  • Wong CW, Song C, Grimes MM, Fu W, Dewhirst MW, Muschel RJ et al (2002) Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am J Pathol 161:749–753

    PubMed  Google Scholar 

  • Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A 108:16369–16374

    PubMed  CAS  Google Scholar 

  • Wong CC, Zhang H, Gilkes DM, Chen J, Wei H, Chaturvedi P et al (2012) Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J Mol Med 90:803–815

    PubMed  CAS  Google Scholar 

  • Wood S Jr (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66:550–568

    PubMed  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    PubMed  CAS  Google Scholar 

  • Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10:295–305

    PubMed  CAS  Google Scholar 

  • Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8:629–642

    PubMed  CAS  Google Scholar 

  • Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A 85:9533–9537

    PubMed  CAS  Google Scholar 

  • Zhan M, Zhao H, Han ZC (2004) Signalling mechanisms of anoikis. Histol Histopathol 19:973–983

    PubMed  CAS  Google Scholar 

  • Zhang L, Smith KM, Chong AL, Stempak D, Yeger H, Marrano P et al (2009) In vivo antitumor and antimetastatic activity of sunitinib in preclinical neuroblastoma mouse model. Neoplasia 11:426–435

    PubMed  CAS  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Erler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Chang, J., Erler, J. (2014). Hypoxia-Mediated Metastasis. In: Koumenis, C., Hammond, E., Giaccia, A. (eds) Tumor Microenvironment and Cellular Stress. Advances in Experimental Medicine and Biology, vol 772. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5915-6_3

Download citation

Publish with us

Policies and ethics