Skip to main content

Environmental Toxicology: Oxidative Stress

  • Chapter
  • First Online:
Book cover Environmental Toxicology
  • 2884 Accesses

Abstract

Oxidative stress is a process or outcome in which an imbalance in prooxidant and antioxidant reactions causes macromolecular damage and/or disruption of biologic redox signaling and control (Fig. 12.1) [1]. Oxidation–reduction reactions, or “redox” reactions, are reactions involving electron transfer. These reactions are central to energy metabolism and maintenance of metabolic and physical organization of living organisms. Environmental agents that interfere with redox reactions or promote abnormal redox reactions are highly destructive to biologic macromolecules and metabolic organization.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Antioxidant:

A term loosely defined as something that stops oxidation when present at a low amount. The term is used most specifically to mean a free radical-scavenging chemical that accepts or donates an electron to a radical to terminate radical chain reactions. The term is also used for agents that inactivate radical initiation and catalysis, such as metal ion chelators, agents that block radiation-induced oxidation, and agents that counter oxidation of a substance with reduction.

Disulfide:

An intermediate oxidation state of sulfur that is readily interconverted with the reduced (thiol) state and commonly found in biomolecules. Disulfides are important in protein structure, function, regulation, and translocation. Disulfide formation in proteins and low molecular mass sulfur-containing chemicals (glutathione, cysteine, Co-enzyme A) is a common and sensitive indicator of oxidative stress.

Electrophile (or electrophilic chemical):

A chemical with a functional group that is deficient in electron density, such as a quinone or conjugated aldehyde, and therefore reactive with a nucleophilic chemical containing electron-rich functional groups, such as a thiol. Electrophiles are important in toxicology because they react with nucleophilic centers in DNA, causing mutations and cancer, and with proteins, disrupting enzyme, receptor, transporter, gene expression, and other critical functions.

Lipid peroxidation:

A radical chain reaction involving polyunsaturated fatty acids (PUFA) and O2. The process is initiated by agents that abstract a hydrogen atom from the carbon skeleton to form a carbon-centered radical, propagated by addition of O2 and abstraction of a hydrogen atom from another carbon skeleton with creation of a lipid hydroperoxide and another radical, and ultimately terminated by reaction of radicals with each other to create non-radical species. The process causes fats and oils to become rancid and is common in decaying organic matter.

Oxidative stress:

A process or outcome in which an imbalance in prooxidant and antioxidant reactions causes macromolecular damage and/or disruption of biologic redox signaling and control. All classes of macromolecules and any biologic function can be affected. Effects on DNA are important in mutagenesis and cancer, effects on proteins contribute to many acute and chronic toxicities, effects on lipids contribute to dysfunctional energy metabolism and immunity, and effects on carbohydrates affect biological lubricants in joints and cellular identity.

Prooxidant:

An agent that stimulates aberrant electron transfer in biologic systems and causes oxidative stress. This includes agents that initiate radical reactions, oxidize biologic components, or interfere with normal reductive and antioxidant functions.

Radical (or free radical):

An organic molecule with an unpaired electron. Radicals are important in biologic systems because they are reactive and can disrupt biologic functions. Radicals participate in a unique type of chemical reaction sequence termed a chain reaction. A radical chain reaction, such as that illustrated by lipid peroxidation, is initiated by an agent that removes (or adds) an electron from a non-radical chemical to form a radical. The chemical structure is modified, and the radical product becomes a non-radical by accepting or donating an electron to another non-radical species, thereby propagating the reaction sequence. The process is ultimately terminated by reaction of radicals with each other to create non-radical species.

Reactive oxygen species (ROS), sometimes reactive oxygen intermediates (ROI):

One or more oxygen-containing chemicals that are reactive with organic molecules. This term is often used to refer to superoxide anion radical, hydrogen peroxide, lipid hydroperoxide, and related oxygen-centered radicals, but may also include reactive nitrogen species (RNS), such as nitric oxide, peroxynitrite, and other oxides of nitrogen (NOx), which also contain oxygen. The term is most often used because the chemistry is too complex and/or the analytic methods are insufficient to identify specific reactive species.

Redox cycling:

A process in which a chemical accepts an electron from a biological reductant and transfers that electron to O2 or other acceptor to create aberrant radical generation. Many quinones and other aromatic chemicals do this by interacting with flavoproteins. The process is considered “cycling” because the chemical functions only as a catalyst. After donating the electron to an acceptor, the original form is regenerated so that it can accept another electron. If electrons are transferred between redox-signaling pathways, this creates a “short circuit,” disrupting cell regulation.

Redox signaling:

A mechanism for cellular communication involving an oxidation–reduction reaction. This process commonly involves generation of a small diffusible redox-active chemical that transfers a signal to a biologic receptor. Redox signaling is highly integrated with kinase signaling and other central cell communication mechanisms, and difficult to discriminate from a more general process of redox sensing, which coordinates cellular functions via widely distributed redox-sensitive cysteine residues in proteins.

Thiol:

An organic form of sulfur containing a sulfur-hydrogen covalent bond. This is the reduced form of sulfur in the amino acid cysteine, in the antioxidant glutathione, and in most cysteine residues in cellular proteins. In proteins, thiols are also termed “sulfhydryl groups.” The thiol functional group supports diverse reactivity and catalytic functions of proteins. Interconversion with disulfides and other forms allows thiols to serve as structural transducers as well as chemical signal transducers.

Xenobiotic:

A chemical that is foreign to an organism. Although often used to refer to man-made chemicals, the term is also used to discriminate chemicals derived exogenously from the environment from those that are generated endogenously as a consequence of intermediary metabolism.

Bibliography

  1. Sies H, Jones DP (2007) Oxidative stress. In: Fink G (ed) Encyclopedia of stress. Elsevier, San Diego, pp 45–48

    Google Scholar 

  2. Ruidavets JB, Cournot M, Cassadou S, Giroux M, Meybeck M, Ferrieres J (2005) Ozone air pollution is associated with acute myocardial infarction. Circulation 111:563–569

    PubMed  CAS  Google Scholar 

  3. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics – from air pollution to climate change, 2nd edn. Wiley, New York, 1225 pp

    Google Scholar 

  4. Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    CAS  Google Scholar 

  5. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    PubMed  CAS  Google Scholar 

  6. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    PubMed  CAS  Google Scholar 

  7. Ragunathan N, Dairou J, Sanfins E, Busi F, Noll C, Janel N, Dupret JM, Rodrigues-Lima F (2010) Cadmium alters the biotransformation of carcinogenic aromatic amines by arylamine n-acetyltransferase xenobiotic-metabolizing enzymes: molecular, cellular, and in vivo studies. Environ Health Perspect 118:1685–1691

    PubMed  CAS  Google Scholar 

  8. Hideg E, Vass I (1996) Uv-b induced free radical production in plant leaves and isolated thylakoid membranes. Plant Sci 115:251–260

    CAS  Google Scholar 

  9. Jurkiewicz BA, Buettner GR (1996) Epr detection of free radicals in uv-irradiated skin: mouse versus human. Photochem Photobiol 64:918–922

    PubMed  CAS  Google Scholar 

  10. Bernhard WA (2009) Radical reaction pathways initiated by direct energy deposition in DNA by ionizing radiation. In: Greenberg MM (ed) Radical and radical ion reactivity in nucleic acid chemistry. Wiley, Hoboken, pp 41–68

    Google Scholar 

  11. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    PubMed  CAS  Google Scholar 

  12. Tafazoli S, Spehar DD, O’Brien PJ (2005) Oxidative stress mediated idiosyncratic drug toxicity. Drug Metab Rev 37:311–325

    PubMed  CAS  Google Scholar 

  13. Araujo JA, Barajas B, Kleinman M, Wang X, Bennett BJ, Gong KW, Navab M, Harkema J, Sioutas C, Lusis AJ, Nel AE (2008) Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 102:589–596

    PubMed  CAS  Google Scholar 

  14. Siddique HR, Gupta SC, Mitra K, Bajpai VK, Mathur N, Murthy RC, Saxena DK, Chowdhuri DK (2008) Adverse effect of tannery waste leachates in transgenic drosophila melanogaster: role of Ros in modulation of Hsp70, oxidative stress and apoptosis. J Appl Toxicol 28:734–748

    PubMed  CAS  Google Scholar 

  15. Matschullat J, Birmann K, Borba RP, Ciminelli V, Deschamps EM, Figueiredo BR, Gabrio T, Haßler S, Hilscher A, Junghänel I, de Oliveira N, Raßbach K, Schmidt H, Schwenk M, de Oliveira Vilhena MJ, Weidner U, Abmjbrz BP, Richard HL (2007) Long-term environmental impact of arsenic-dispersion in Minas Gerais, Brazil. In: Bundschuh J, Zevenhoven R, Loeppert RH (eds) Trace metals and other contaminants in the environment. Elsevier, Great Lakes, pp 365–382

    Google Scholar 

  16. Jones KC, de Voogt P (1999) Persistent organic pollutants (pops): state of the science. Environ Pollut 100:209–221

    PubMed  CAS  Google Scholar 

  17. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT, Malde MK, Du ZY, Chavey C, Fajas L, Lundebye AK, Brand CL, Vidal H, Kristiansen K, Froyland L (2010) Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 118:465–471

    PubMed  CAS  Google Scholar 

  18. Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:A390–A396

    Google Scholar 

  19. Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, Goldman LR (2007) Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 115:1670–1676

    PubMed  CAS  Google Scholar 

  20. Wallington TJ, Hurley MD, Xia J, Wuebbles DJ, Sillman S, Ito A, Penner JE, Ellis DA, Martin J, Mabury SA, Nielsen OJ, Sulbaek Andersen MP (2006) Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environ Sci Technol 40:924–930

    PubMed  CAS  Google Scholar 

  21. Rappaport SM (2010) Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol 21:5–9

    PubMed  Google Scholar 

  22. Wild CP (2005) Complementing the genome with an “Exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14:1847–1850

    CAS  Google Scholar 

  23. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic, London, pp 1–8

    Google Scholar 

  24. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    PubMed  CAS  Google Scholar 

  25. Voit E, Neves AR, Santos H (2006) The intricate side of systems biology. Proc Natl Acad Sci USA 103:9452–9457

    PubMed  CAS  Google Scholar 

  26. Voit EO, Qi Z, Miller GW (2008) Steps of modeling complex biological systems. Pharmacopsychiatry 41(Suppl 1):S78–S84

    PubMed  Google Scholar 

  27. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Meth 5:16–18

    CAS  Google Scholar 

  28. Callinan PA, Feinberg AP (2006) The emerging science of epigenomics. Hum Mol Genet 15(Spec No 1):R95–R101

    PubMed  CAS  Google Scholar 

  29. Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Bradford BU, Bumgarner RE, Bushel PR, Chaturvedi K, Choi D, Cunningham ML, Deng S, Dressman HK, Fannin RD, Farin FM, Freedman JH, Fry RC, Harper A, Humble MC, Hurban P, Kavanagh TJ, Kaufmann WK, Kerr KF, Jing L, Lapidus JA, Lasarev MR, Li J, Li YJ, Lobenhofer EK, Lu X, Malek RL, Milton S, Nagalla SR, O’Malley JP, Palmer VS, Pattee P, Paules RS, Perou CM, Phillips K, Qin LX, Qiu Y, Quigley SD, Rodland M, Rusyn I, Samson LD, Schwartz DA, Shi Y, Shin JL, Sieber SO, Slifer S, Speer MC, Spencer PS, Sproles DI, Swenberg JA, Suk WA, Sullivan RC, Tian R, Tennant RW, Todd SA, Tucker CJ, Van Houten B, Weis BK, Xuan S, Zarbl H (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat Meth 2:351–356

    Google Scholar 

  30. Li H, Grigoryan H, Funk WE, Lu SS, Rose S, Williams ER, Rappaport SM (2010) Profiling Cys34 adducts of human serum albumin by fixed-step selected reaction monitoring. Mol Cell Proteomics (Ahead of print)

    Google Scholar 

  31. Funk WE, Li H, Iavarone AT, Williams ER, Riby J, Rappaport SM (2010) Enrichment of cysteinyl adducts of human serum albumin. Anal Biochem 400:61–68

    PubMed  CAS  Google Scholar 

  32. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667

    PubMed  CAS  Google Scholar 

  33. Johnson JM, Yu T, Strobel FH, Jones DP (2010) A practical approach to detect unique metabolic patterns for personalized medicine. Analyst 135:2864–2870

    PubMed  CAS  Google Scholar 

  34. Namakkal Soorappan R, Varadharaj S, Khanderao GD, Davidson CJ, Kannan S, Firpo MA, Zweier J, Benjamin I (2010) Sustained activation of nrf2/are signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxid Redox Signal (Ahead of print)

    Google Scholar 

  35. Zhang X, Min X, Li C, Benjamin IJ, Qian B, Ding Z, Gao X, Yao Y, Ma Y, Cheng Y, Liu L (2010) Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension 55:1412–1417

    PubMed  CAS  Google Scholar 

  36. Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37:1233–1241

    PubMed  CAS  Google Scholar 

  37. Priestley J (1775) Letter to sir john pringle. Philos Trans 65:384–390

    Google Scholar 

  38. Bitterman N, Bitterman H (2006) Oxygen toxicity. In: Mathiew D (ed) Handbook on hyperbaric medicine. Dordrecht, Springer

    Google Scholar 

  39. Silverman WA (2004) A cautionary tale about supplemental oxygen: the albatross of neonatal medicine. Pediatrics 113:394–396

    PubMed  Google Scholar 

  40. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330:1029–1035

    Google Scholar 

  41. Gruppo Italiano Per Lo Studio Della Sopravvivenza Nell’infarto Miocardico (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin e after myocardial infarction: results of the gissi-prevenzione trial. Lancet 354:447–455

    Google Scholar 

  42. Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS Report no. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  43. de Gaetano G (2001) Low-dose aspirin and vitamin e in people at cardiovascular risk: a randomised trial in general practice. Collaborative group of the primary prevention project. Lancet 357:89–95

    PubMed  Google Scholar 

  44. Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, LaMotte F, Gaziano JM, Ridker PM, Willett W, Peto R (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334:1145–1149

    PubMed  CAS  Google Scholar 

  45. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. J Am Med Assoc 293:1338–1347

    Google Scholar 

  46. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin e supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342:154–160

    PubMed  CAS  Google Scholar 

  47. Zureik M, Galan P, Bertrais S, Mennen L, Czernichow S, Blacher J, Ducimetiere P, Hercberg S (2004) Effects of long-term daily low-dose supplementation with antioxidant vitamins and minerals on structure and function of large arteries. Arterioscler Thromb Vasc Biol 24:1485–1491

    PubMed  CAS  Google Scholar 

  48. Williams KJ, Fisher EA (2005) Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 8:139–146

    PubMed  CAS  Google Scholar 

  49. Loew O (1901) Catalase, a new enzyme of general occurrence. U.S. Department of Agriculture Report no. 68, pp 47–55

    Google Scholar 

  50. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    PubMed  CAS  Google Scholar 

  51. Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Meth Biochem Anal 1:357–424

    CAS  Google Scholar 

  52. Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc Lond B – Containing Pap Biol Character 98:312–339

    Google Scholar 

  53. Dutton PL, Wilson DF (1974) Redox potentiometry in mitochondrial and photosynthetic bioenergetics. Biochim Biophys Acta 346:165–212

    PubMed  CAS  Google Scholar 

  54. Wolf G (2005) The discovery of the antioxidant function of vitamin E: the contribution of Henry A. Mattill J Nutr 135:363–366

    CAS  Google Scholar 

  55. Mills GC (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229:189–197

    PubMed  CAS  Google Scholar 

  56. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    PubMed  CAS  Google Scholar 

  57. Recknagel RO, Ghoshal AK (1966) Lipoperoxidation of rat liver microsomal lipids induced by carbon tetrachloride. Nature 210:1162–1163

    PubMed  CAS  Google Scholar 

  58. Recknagel RO, Ghoshal AK (1966) Lipoperoxidation as a vector in carbon tetrachloride hepatotoxicity. Lab Invest 15:132–148

    PubMed  CAS  Google Scholar 

  59. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  60. Tribble DL, Aw TY, Jones DP (1987) The pathophysiological significance of lipid peroxidation in oxidative cell injury. Hepatology 7:377–386

    PubMed  CAS  Google Scholar 

  61. Fridovich I (1997) Superoxide anion radical (O −•2 ), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    PubMed  CAS  Google Scholar 

  62. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  63. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  64. Jones DP (2006) Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 163:38–53

    PubMed  CAS  Google Scholar 

  65. Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9:169–181

    PubMed  CAS  Google Scholar 

  66. Griendling KK (2006) Nadph oxidases: new regulators of old functions. Antioxid Redox Signal 8:1443–1445

    PubMed  CAS  Google Scholar 

  67. Lambeth JD (2004) Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    PubMed  CAS  Google Scholar 

  68. Orrenius S (2004) Mitochondrial regulation of apoptotic cell death. Toxicol Lett 149:19–23

    PubMed  CAS  Google Scholar 

  69. Morrow JD, Roberts LJ 2nd (1999) Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Meth Enzymol 300:3–12

    PubMed  CAS  Google Scholar 

  70. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186:464–478

    PubMed  CAS  Google Scholar 

  71. Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 37:1963–1985

    PubMed  CAS  Google Scholar 

  72. Go YM, Park H, Koval M, Orr M, Reed M, Liang Y, Smith D, Pohl J, Jones DP (2010) A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radic Biol Med 48:275–283

    PubMed  CAS  Google Scholar 

  73. Morrow JD, Roberts LJ 2nd (2002) Mass spectrometric quantification of F2-isoprostanes as indicators of oxidant stress. Meth Mol Biol 186:57–66

    CAS  Google Scholar 

  74. Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    PubMed  CAS  Google Scholar 

  75. Fisher AB, Dodia C, Manevich Y, Chen JW, Feinstein SI (1999) Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J Biol Chem 274:21326–21334

    PubMed  CAS  Google Scholar 

  76. Wang Y, Phelan SA, Manevich Y, Feinstein SI, Fisher AB (2006) Transgenic mice overexpressing peroxiredoxin 6 show increased resistance to lung injury in hyperoxia. Am J Respir Cell Mol Biol 34:481–486

    PubMed  CAS  Google Scholar 

  77. Cai J, Jones DP (1998) Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome C loss. J Biol Chem 273:11401–11404

    PubMed  CAS  Google Scholar 

  78. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868

    PubMed  CAS  Google Scholar 

  79. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    PubMed  CAS  Google Scholar 

  80. Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98:355–360

    PubMed  CAS  Google Scholar 

  81. Thomas DD, Ridnour LA, Espey MG, Donzelli S, Ambs S, Hussain SP, Harris CC, DeGraff W, Roberts DD, Mitchell JB, Wink DA (2006) Superoxide fluxes limit nitric oxide-induced signaling. J Biol Chem 281:25984–25993

    PubMed  CAS  Google Scholar 

  82. Fridovich I (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245:4053–4057

    PubMed  CAS  Google Scholar 

  83. Jones DP, Eklow L, Thor H, Orrenius S (1981) Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem Biophys 210:505–516

    PubMed  CAS  Google Scholar 

  84. Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780(11):1273–1290

    PubMed  CAS  Google Scholar 

  85. Barja G (2002) Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res Rev 1:397–411

    PubMed  CAS  Google Scholar 

  86. Doudican NA, Song B, Shadel GS, Doetsch PW (2005) Oxidative DNA damage causes mitochondrial genomic instability in saccharomyces cerevisiae. Mol Cell Biol 25:5196–5204

    PubMed  CAS  Google Scholar 

  87. Calabrese EJ, Baldwin LA (2003) The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci 71:246–250

    PubMed  CAS  Google Scholar 

  88. Winterbourn CC, Metodiewa D (1994) The reaction of superoxide with reduced glutathione. Arch Biochem Biophys 314:284–290

    PubMed  CAS  Google Scholar 

  89. Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic Biol Med 31:1279–1283

    PubMed  CAS  Google Scholar 

  90. Starke DW, Chock PB, Mieyal JJ (2003) Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J Biol Chem 278:14607–14613

    PubMed  CAS  Google Scholar 

  91. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    PubMed  CAS  Google Scholar 

  92. van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423:773–777

    PubMed  Google Scholar 

  93. Biteau B, Labarre J, Toledano MB (2003) Atp-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    PubMed  CAS  Google Scholar 

  94. Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG (2003) Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653–656

    PubMed  CAS  Google Scholar 

  95. Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG (2003) Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 278:47361–47364

    PubMed  CAS  Google Scholar 

  96. Kim HY, Gladyshev VN (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-r-sulfoxide reductases. Mol Biol Cell 15:1055–1064

    PubMed  CAS  Google Scholar 

  97. Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL (2005) Methionine oxidation and aging. Biochim Biophys Acta 1703:135–140

    PubMed  CAS  Google Scholar 

  98. Gladyshev VN, Hatfield DL (1999) Selenocysteine-containing proteins in mammals. J Biomed Sci 6:151–160

    PubMed  CAS  Google Scholar 

  99. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    PubMed  CAS  Google Scholar 

  100. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    PubMed  CAS  Google Scholar 

  101. Carp H, Miller F, Hoidal JR, Janoff A (1982) Potential mechanism of emphysema: alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Sci USA 79:2041–2045

    PubMed  CAS  Google Scholar 

  102. Hansel A, Kuschel L, Hehl S, Lemke C, Agricola HJ, Hoshi T, Heinemann SH (2002) Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins. FASEB J 16:911–913

    PubMed  CAS  Google Scholar 

  103. Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, St John G, Nathan C, Brot N (2002) Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397:172–178

    PubMed  CAS  Google Scholar 

  104. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    PubMed  CAS  Google Scholar 

  105. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MSRA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci USA 98:12920–12925

    PubMed  CAS  Google Scholar 

  106. Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

    PubMed  CAS  Google Scholar 

  107. Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20:1064–1073

    PubMed  CAS  Google Scholar 

  108. Jones DP, Go YM (2010) Mapping the cysteine proteome: analysis of redox-sensing thiols. Curr Opin Chem Biol 15:1–10

    Google Scholar 

  109. Hansen JM, Go YM, Jones DP (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215–234

    PubMed  CAS  Google Scholar 

  110. Gallogly MM, Starke DW, Mieyal JJ (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 11:1059–1081

    PubMed  CAS  Google Scholar 

  111. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44:921–937

    PubMed  CAS  Google Scholar 

  112. Cenci S, Sitia R (2007) Managing and exploiting stress in the antibody factory. FEBS Lett 581:3652–3657

    PubMed  CAS  Google Scholar 

  113. Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674

    PubMed  CAS  Google Scholar 

  114. Go YM, Jones DP (2010) Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal 13:489–509

    PubMed  CAS  Google Scholar 

  115. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(Suppl 1):2466–2472

    PubMed  Google Scholar 

  116. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465

    PubMed  CAS  Google Scholar 

  117. Greenberg M (2009) Radical and radical ion reactivity in nucleic acid chemistry. Wiley, New York, 466 pp

    Google Scholar 

  118. Sarkar D, Datta R, Hannigan R (2007) Concepts and applications in environmental geochemistry. Elsevier, Amsterdam, 761 pp

    Google Scholar 

  119. Keilin D (1966) The history of cell respiration and cytochrome. In: Keilin D (ed) The history of cell respiration and cytochrome. Cambridge University Press, Cambridge

    Google Scholar 

  120. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    PubMed  CAS  Google Scholar 

  121. Wu JJ, Quijano C, Chen E, Liu H, Cao L, Fergusson MM, Rovira II, Gutkind S, Daniels MP, Komatsu M, Finkel T (2009) Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging 1:425–437

    PubMed  CAS  Google Scholar 

  122. Swanson RA, Siesjo B (2002) Oxidative stress in cerebrovascular disease. In: Swanson RA, Siesjo B (eds) Oxidative stress in cerebrovascular disease. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgment

Research support provided by grants from the National Institutes of Environmental Health Sciences ES009047 and ES011195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean P. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, D.P. (2013). Environmental Toxicology: Oxidative Stress. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_12

Download citation

Publish with us

Policies and ethics