Skip to main content

Environmental Toxicology: Carcinogenesis

  • Chapter
  • First Online:
Environmental Toxicology
  • 2907 Accesses

Abstract

Carcinogenesis is the induction of cancer by exposure to exogenous agents, chemical or physical carcinogens. Cancer is a large family of life-threatening environmental diseases. This definition is supported by the plethora of published evidence that cancer results from the accumulation of DNA mutations, which in turn depends upon progressive cell divisions. This process takes time. The accumulation of a sufficient allotment of oncogenic genetic errors for cancer to develop occurs over a large number of cell divisions (10s to 1,000s), which may take 10–50 years or more. Even without the intentional introduction of carcinogens into the human body by occupation or habits such as tobacco smoking, alcoholic use, and other life-style choices, our environment provides numerous opportunities and sources of DNA-damaging and potentially mutagenic lesions in our cells.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Complex dose:

The biologically effective (e.g., carcinogenic) dose of an agent that takes into account additive, subtractive, and synergistic interactions in a complex mixture

DNA adduct:

Any covalent addition or modification of a nucleotide or the phosphate backbone in DNA

Driver mutation:

Oncogenic mutations that are primary to the further advancement and development of a cancer

Genotoxic:

Causes DNA damage and/or mutations

Immortal stranding:

The retention of a specific strand of the DNA double helix by a stem cell regardless of how many times the cell divides

Initiation:

The formation of the first oncogenic mutation in a cell

Oncogenic process:

Any process that is involved in the development of a tumor

Proto-oncogene:

A normal gene that upon mutation produces an active oncogenic component in the development of cancer

Promotion:

The effect of encouraging the development of cancer by increasing cellular proliferation and turnover

Tumor suppressor gene:

A normal gene whose expression product appears to block the development of cancer

Bibliography

  1. Ferguson LR, Philpott M (2008) Nutrition and mutagenesis. Annu Rev Nutr 28:313–329

    Article  PubMed  CAS  Google Scholar 

  2. Dybing E, O’Brien J, Renwick AG, Sanner T (2008) Risk assessment of dietary exposures to compounds that are genotoxic and carcinogenic–an overview. Toxicol Lett 180(2):110–117

    Article  PubMed  CAS  Google Scholar 

  3. Hashimoto K, Higuchi M, Makino B, Sakakibara I, Kubo M, Komatsu Y, Maruno M, Okada M (1999) Quantitative analysis of aristolochic acids, toxic compounds, contained in some medicinal plants. J Ethnopharmacol 64(2):185–189

    Article  PubMed  CAS  Google Scholar 

  4. Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342(23):1686–1692

    Article  PubMed  CAS  Google Scholar 

  5. Lai MN, Wang SM, Chen PC, Chen YY, Wang JD (2010) Population-based case-control study of Chinese herbal products containing aristolochic acid and urinary tract cancer risk. J Natl Cancer Inst 102(3):179–186

    Article  PubMed  CAS  Google Scholar 

  6. Christman JK, Sheikhnejad G, Dizik M, Abileah S, Wainfan E (1993) Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis 14(4):551–557

    Article  PubMed  CAS  Google Scholar 

  7. Pufulete M, Al-Ghnaniem R, Rennie JA, Appleby P, Harris N, Gout S, Emery PW, Sanders TA (2005) Influence of folate status on genomic DNA methylation in colonic mucosa of subjects without colorectal adenoma or cancer. Br J Cancer 92(5):838–842

    Article  PubMed  CAS  Google Scholar 

  8. Pogribny IP, Ross SA, Wise C, Pogribna M, Jones EA, Tryndyak VP, James SJ, Dragan YP, Poirier LA (2006) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593(1–2):80–87

    PubMed  CAS  Google Scholar 

  9. Robinson JK (2005) Sun exposure, sun protection, and vitamin D. JAMA 294(12):1541–1543

    Article  PubMed  Google Scholar 

  10. Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, Coldiron BM (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146(3):283–287

    Article  PubMed  Google Scholar 

  11. Kao SC, Reid G, Lee K, Vardy J, Clarke S, van Zandwijk N (2010) Malignant mesothelioma. Intern Med J 40(11):742–750

    Article  PubMed  Google Scholar 

  12. Boffetta P, Hashibe M (2006) Alcohol and cancer. Lancet Oncol 7(2):149–156

    Article  PubMed  CAS  Google Scholar 

  13. Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599–612

    Article  PubMed  CAS  Google Scholar 

  14. Pelucchi C, Gallus S, Garavello W, Bosetti C, La Vecchia C (2008) Alcohol and tobacco use, and cancer risk for upper aerodigestive tract and liver. Eur J Cancer Prev 17(4):340–344

    Article  PubMed  Google Scholar 

  15. Hecht SS, Kassie F, Hatsukami DK (2009) Chemoprevention of lung carcinogenesis in addicted smokers and ex-smokers. Nat Rev Cancer 9(7):476–488

    Article  PubMed  CAS  Google Scholar 

  16. McKillop IH, Schrum LW (2009) Role of alcohol in liver carcinogenesis. Semin Liver Dis 29(2):222–232

    Article  PubMed  CAS  Google Scholar 

  17. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406

    Article  PubMed  CAS  Google Scholar 

  18. United States Cancer Statistics (USCS) (1999–2006) Cancer Incidence and Mortality Data, National Program of Cancer Registries (NPCR), Center for Disease Control and Prevention, Department of Health and Human Services, USA. http://apps.nccd.cdc.gov/uscs/index.aspx. Accessed March 2010

  19. Bielas JH, Loeb LA (2005) Mutator phenotype in cancer: timing and perspectives. Environ Mol Mutagen 45(2–3):206–213

    Article  PubMed  CAS  Google Scholar 

  20. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724

    Article  PubMed  CAS  Google Scholar 

  21. Ames BN (1989) Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun 7(3–6):121–128

    Article  PubMed  CAS  Google Scholar 

  22. Loft S, Poulsen HE (1998) Estimation of oxidative DNA damage in man from urinary excretion of repair products. Acta Biochim Pol 45(1):133–144

    PubMed  CAS  Google Scholar 

  23. Shigenaga MK, Gimeno CJ, Ames BN (1989) Urinary 8-hydroxy-2’-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci USA 86(24):9697–9701

    Article  PubMed  CAS  Google Scholar 

  24. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  PubMed  CAS  Google Scholar 

  25. Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121(11):2373–2380

    Article  PubMed  CAS  Google Scholar 

  26. Dahlmann HA, Vaidyanathan VG, Sturla SJ (2009) Investigating the biochemical impact of DNA damage with structure-based probes: abasic sites, photodimers, alkylation adducts, and oxidative lesions. Biochemistry 48(40):9347–9359

    Article  PubMed  CAS  Google Scholar 

  27. Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM (2010) Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res.

    Google Scholar 

  28. Yuan J, Narayanan L, Rockwell S, Glazer PM (2000) Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60(16):4372–4376

    PubMed  CAS  Google Scholar 

  29. Camenisch U, Naegeli H (2009) Role of DNA repair in the protection against genotoxic stress. EXS 99:111–150

    PubMed  CAS  Google Scholar 

  30. Goldsby RE, Lawrence NA, Hays LE, Olmsted EA, Chen X, Singh M, Preston BD (2001) Defective DNA polymerase-delta proofreading causes cancer susceptibility in mice. Nat Med 7(6):638–639

    Article  PubMed  CAS  Google Scholar 

  31. Loeb LA, Bielas JH, Beckman RA (2008) Cancers exhibit a mutator phenotype: clinical implications. Cancer Res 68(10):3551–3557, discussion 3557

    Article  PubMed  CAS  Google Scholar 

  32. Zegerman P, Diffley JF (2009) DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst) 8(9):1077–1088

    Article  CAS  Google Scholar 

  33. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  34. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  PubMed  CAS  Google Scholar 

  35. Weinberg RA (2008) Mechanisms of malignant progression. Carcinogenesis 29(6):1092–1095

    Article  PubMed  CAS  Google Scholar 

  36. Weinberg RA (2008) Coevolution in the tumor microenvironment. Nat Genet 40(5):494–495

    Article  PubMed  CAS  Google Scholar 

  37. Chatten C, Bathe OF (2010) Immunoregulatory cells of the tumor microenvironment. Front Biosci 15:291–308

    Article  PubMed  CAS  Google Scholar 

  38. Peto J (2001) Cancer epidemiology in the last century and the next decade. Nature 411(6835):390–395

    Article  PubMed  CAS  Google Scholar 

  39. Loeb LA, Harris CC (2008) Advances in chemical carcinogenesis: a historical review and prospective. Cancer Res 68(17):6863–6872

    Article  PubMed  CAS  Google Scholar 

  40. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7(5):335–346

    Article  PubMed  CAS  Google Scholar 

  41. McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18(1):148–161

    Article  PubMed  CAS  Google Scholar 

  42. Kunkel TA (2009) Evolving views of DNA replication (In)fidelity. Cold Spring Harbour Symp Quant Biol 74:91–101

    Article  CAS  Google Scholar 

  43. Hussain SP, He P, Subleski J, Hofseth LJ, Trivers GE, Mechanic L, Hofseth AB, Bernard M, Schwank J, Nguyen G, Mathe E, Djurickovic D, Haines D, Weiss J, Back T, Gruys E, Laubach VE, Wiltrout RH, Harris CC (2008) Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res 68(17):7130–7136

    Article  PubMed  CAS  Google Scholar 

  44. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  PubMed  CAS  Google Scholar 

  45. Blanquet V, Turleau C, Gross-Morand MS, Senamaud-Beaufort C, Doz F, Besmond C (1995) Spectrum of germline mutations in the RB1 gene: a study of 232 patients with hereditary and non hereditary retinoblastoma. Hum Mol Genet 4(3):383–388

    Article  PubMed  CAS  Google Scholar 

  46. Hussain SP, Harris CC (1998) Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58(18):4023–4037

    PubMed  CAS  Google Scholar 

  47. Wilson VL (2001) Detecting rare mutations associated with cancer risk. Am J Pharmacogenomics 1(4):283–293

    Article  PubMed  CAS  Google Scholar 

  48. Tapp RA, Feng J, Jones JW, Carlson JA, Wilson VL (2007) Single base instability is promoted in vulvar lichen sclerosus. J Invest Dermatol 127(11):2563–2576

    Article  PubMed  CAS  Google Scholar 

  49. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629

    Article  PubMed  CAS  Google Scholar 

  50. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, Cooper DN (2009) The Human Gene Mutation Database: 2008 update. Genome Med 1(1):13

    Article  PubMed  CAS  Google Scholar 

  51. Kumar R, Angelini S, Hemminki K (2003) Activating BRAF and N-Ras mutations in sporadic primary melanomas: an inverse association with allelic loss on chromosome 9. Oncogene 22(58):9217–9224

    Article  PubMed  CAS  Google Scholar 

  52. Aplan PD (2006) Causes of oncogenic chromosomal translocation. Trends Genet 22(1):46–55

    Article  PubMed  CAS  Google Scholar 

  53. MacCorkle RA, Slattery SD, Nash DR, Brinkley BR (2006) Intracellular protein binding to asbestos induces aneuploidy in human lung fibroblasts. Cell Motil Cytoskeleton 63(10):646–657

    Article  PubMed  CAS  Google Scholar 

  54. Pavanello S, Pesatori AC, Dioni L, Hoxha M, Bollati V, Siwinska E, Mielzynska D, Bolognesi C, Bertazzi PA, Baccarelli A (2010) Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis 31(2):216–221

    Article  PubMed  CAS  Google Scholar 

  55. Hirao T, Nelson HH, Ashok TD, Wain JC, Mark EJ, Christiani DC, Wiencke JK, Kelsey KT (2001) Tobacco smoke-induced DNA damage and an early age of smoking initiation induce chromosome loss at 3p21 in lung cancer. Cancer Res 61(2):612–615

    PubMed  CAS  Google Scholar 

  56. Saletta F, Matullo G, Manuguerra M, Arena S, Bardelli A, Vineis P (2007) Exposure to the tobacco smoke constituent 4-aminobiphenyl induces chromosomal instability in human cancer cells. Cancer Res 67(15):7088–7094

    Article  PubMed  CAS  Google Scholar 

  57. Shinmura K, Iwaizumi M, Igarashi H, Nagura K, Yamada H, Suzuki M, Fukasawa K, Sugimura H (2008) Induction of centrosome amplification and chromosome instability in p53-deficient lung cancer cells exposed to benzo[a]pyrene diol epoxide (B[a]PDE). J Pathol 216(3):365–374

    Article  PubMed  CAS  Google Scholar 

  58. Groopman JD, Donahue PR, Zhu JQ, Chen JS, Wogan GN (1985) Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography. Proc Natl Acad Sci USA 82(19):6492–6496

    Article  PubMed  CAS  Google Scholar 

  59. Groopman JD, Wild CP, Hasler J, Junshi C, Wogan GN, Kensler TW (1993) Molecular epidemiology of aflatoxin exposures: validation of aflatoxin-N7-guanine levels in urine as a biomarker in experimental rat models and humans. Environ Health Perspect 99:107–113

    Article  PubMed  CAS  Google Scholar 

  60. Essigmann JM, Wood ML (1993) The relationship between the chemical structures and mutagenic specificities of the DNA lesions formed by chemical and physical mutagens. Toxicol Lett 67(1–3):29–39

    Article  PubMed  CAS  Google Scholar 

  61. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3(5):370–379

    Article  PubMed  CAS  Google Scholar 

  62. Konkel MK, Batzer MA (2010) A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 20(4):211–221

    Article  PubMed  CAS  Google Scholar 

  63. Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  PubMed  CAS  Google Scholar 

  64. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10(11):805–811

    Article  PubMed  CAS  Google Scholar 

  65. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  PubMed  CAS  Google Scholar 

  66. Schubeler D (2009) Epigenomics: Methylation matters. Nature 462(7271):296–297

    Article  PubMed  CAS  Google Scholar 

  67. Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41(1):87–95

    Article  PubMed  CAS  Google Scholar 

  68. Lopez-Serra L, Esteller M (2008) Proteins that bind methylated DNA and human cancer: reading the wrong words. Br J Cancer 98(12):1881–1885

    Article  PubMed  CAS  Google Scholar 

  69. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    Article  PubMed  CAS  Google Scholar 

  70. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36

    Article  PubMed  CAS  Google Scholar 

  71. Wilson VL, Jones PA (1983) Inhibition of DNA methylation by chemical carcinogens in vitro. Cell 32(1):239–246

    Article  PubMed  CAS  Google Scholar 

  72. Wilson VL, Smith RA, Longoria J, Liotta MA, Harper CM, Harris CC (1987) Chemical carcinogen-induced decreases in genomic 5-methyldeoxycytidine content of normal human bronchial epithelial cells. Proc Natl Acad Sci USA 84(10):3298–3301

    Article  PubMed  CAS  Google Scholar 

  73. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89(2):431–437

    Article  PubMed  CAS  Google Scholar 

  74. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67(3):876–880

    Article  PubMed  CAS  Google Scholar 

  75. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21(2):243–251

    Article  PubMed  Google Scholar 

  76. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260

    Article  PubMed  CAS  Google Scholar 

  77. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10(11):882–891

    Article  PubMed  CAS  Google Scholar 

  78. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  PubMed  CAS  Google Scholar 

  79. Kondo Y, Shen L, Yan PS, Huang TH, Issa JP (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA 101(19):7398–7403

    Article  PubMed  CAS  Google Scholar 

  80. McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 101(6):1525–1530

    Article  PubMed  CAS  Google Scholar 

  81. Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR, Issa JP (2008) Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 3(4):e2037

    Article  PubMed  CAS  Google Scholar 

  82. Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23(8):1792–1803

    Article  PubMed  CAS  Google Scholar 

  83. Toh GW, O’Shaughnessy AM, Jimeno S, Dobbie IM, Grenon M, Maffini S, O’Rorke A, Lowndes NF (2006) Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst) 5(6):693–703

    Article  CAS  Google Scholar 

  84. Shahbazian MD, Zhang K, Grunstein M (2005) Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19(2):271–277

    Article  PubMed  CAS  Google Scholar 

  85. Iniguez-Lluhi JA (2006) For a healthy histone code, a little SUMO in the tail keeps the acetyl away. ACS Chem Biol 1(4):204–206

    Article  PubMed  CAS  Google Scholar 

  86. Biel M, Wascholowski V, Giannis A (2005) Epigenetics–an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed Engl 44(21):3186–3216

    Article  PubMed  CAS  Google Scholar 

  87. Henikoff S (2005) Histone modifications: combinatorial complexity or cumulative simplicity? Proc Natl Acad Sci USA 102(15):5308–5309

    Article  PubMed  CAS  Google Scholar 

  88. Talasz H, Lindner HH, Sarg B, Helliger W (2005) Histone H4-lysine 20 monomethylation is increased in promoter and coding regions of active genes and correlates with hyperacetylation. J Biol Chem 280(46):38814–38822

    Article  PubMed  CAS  Google Scholar 

  89. Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19(6):849–856

    Article  PubMed  CAS  Google Scholar 

  90. Khalil AM, Driscoll DJ (2006) Histone H3 lysine 4 dimethylation is enriched on the inactive sex chromosomes in male meiosis but absent on the inactive X in female somatic cells. Cytogenet Genome Res 112(1–2):11–15

    Article  PubMed  CAS  Google Scholar 

  91. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi–Addo B, Gold DL, Sekido Y, Huang TH, Issa JP (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40(6):741–750

    Article  PubMed  CAS  Google Scholar 

  92. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040

    Article  PubMed  CAS  Google Scholar 

  93. Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4(4):276–284

    Article  PubMed  CAS  Google Scholar 

  94. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  PubMed  CAS  Google Scholar 

  95. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84(6):843–851

    Article  PubMed  CAS  Google Scholar 

  96. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193

    Article  PubMed  CAS  Google Scholar 

  97. Gray SG, Ekstrom TJ (2001) The human histone deacetylase family. Exp Cell Res 262(2):75–83

    Article  PubMed  CAS  Google Scholar 

  98. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    Article  PubMed  CAS  Google Scholar 

  99. Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19(5):286–293

    Article  PubMed  CAS  Google Scholar 

  100. Sengupta N, Seto E (2004) Regulation of histone deacetylase activities. J Cell Biochem 93(1):57–67

    Article  PubMed  CAS  Google Scholar 

  101. Gutierrez RM, Hnilica LS (1967) Tissue specificity of histone phosphorylation. Science 157(794):1324–1325

    Article  PubMed  CAS  Google Scholar 

  102. Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci USA 95(13):7480–7484

    Article  PubMed  CAS  Google Scholar 

  103. Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438(7071):1176–1180

    Article  PubMed  CAS  Google Scholar 

  104. Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274(36):25543–25549

    Article  PubMed  CAS  Google Scholar 

  105. Preuss U, Landsberg G, Scheidtmann KH (2003) Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31(3):878–885

    Article  PubMed  CAS  Google Scholar 

  106. Barratt MJ, Hazzalin CA, Cano E, Mahadevan LC (1994) Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc Natl Acad Sci USA 91(11):4781–4785

    Article  PubMed  CAS  Google Scholar 

  107. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5(6):905–915

    Article  PubMed  CAS  Google Scholar 

  108. Clayton AL, Rose S, Barratt MJ, Mahadevan LC (2000) Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 19(14):3714–3726

    Article  PubMed  CAS  Google Scholar 

  109. Panier S, Durocher D (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8(4):436–443

    Article  CAS  Google Scholar 

  110. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP (2009) Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462(7275):935–939

    Article  PubMed  CAS  Google Scholar 

  111. Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, Ng T, Solomon E (2009) The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462(7275):886–890

    Article  PubMed  CAS  Google Scholar 

  112. An JY, Kim EA, Jiang Y, Zakrzewska A, Kim DE, Lee MJ, Mook-Jung I, Zhang Y, Kwon YT (2010) UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci USA 107(5):1912–1917

    Article  PubMed  CAS  Google Scholar 

  113. Grazini U, Zanardi F, Citterio E, Casola S, Goding CR, McBlane F (2010) The RING domain of RAG1 ubiquitylates histone H3: a novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell 37(2):282–293

    Article  PubMed  CAS  Google Scholar 

  114. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X (2010) RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 18(3):371–384

    Article  PubMed  CAS  Google Scholar 

  115. Mabruk MJ, Toh LK, Murphy M, Leader M, Kay E, Murphy GM (2009) Investigation of the effect of UV irradiation on DNA damage: comparison between skin cancer patients and normal volunteers. J Cutan Pathol 36(7):760–765

    Article  PubMed  Google Scholar 

  116. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA (2004) Environmental and chemical carcinogenesis. Semin Cancer Biol 14(6):473–486

    Article  PubMed  CAS  Google Scholar 

  117. Lee WR, Perantie DC, Clark KB, Guillot DA, Wilson VL (2001) Effect of mutagen-induced cell lethality on the dose response of germline mutations. Environ Mol Mutagen 37(4):340–344

    Article  PubMed  CAS  Google Scholar 

  118. Ellison KS, Dogliotti E, Connors TD, Basu AK, Essigmann JM (1989) Site-specific mutagenesis by O6-alkylguanines located in the chromosomes of mammalian cells: influence of the mammalian O6-alkylguanine-DNA alkyltransferase. Proc Natl Acad Sci USA 86(22):8620–8624

    Article  PubMed  CAS  Google Scholar 

  119. Dosanjh MK, Singer B, Essigmann JM (1991) Comparative mutagenesis of O6-methylguanine and O4-methylthymine in Escherichia coli. Biochemistry 30(28):7027–7033

    Article  PubMed  CAS  Google Scholar 

  120. Potten CS, Booth C (2002) Keratinocyte stem cells: a commentary. J Invest Dermatol 119(4):888–899

    Article  PubMed  CAS  Google Scholar 

  121. Bapat SA (2007) Evolution of cancer stem cells. Semin Cancer Biol 17(3):204–213

    Article  PubMed  CAS  Google Scholar 

  122. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128

    Article  PubMed  CAS  Google Scholar 

  123. Yahata T, Muguruma Y, Yumino S, Sheng Y, Uno T, Matsuzawa H, Ito M, Kato S, Hotta T, Ando K (2008) Quiescent human hematopoietic stem cells in the bone marrow niches organize the hierarchical structure of hematopoiesis. Stem Cells 26(12):3228–3236

    Article  PubMed  Google Scholar 

  124. Karpowicz P, Morshead C, Kam A, Jervis E, Ramunas J, Cheng V, van der Kooy D (2005) Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J Cell Biol 170(5):721–732

    Article  PubMed  CAS  Google Scholar 

  125. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437(7056):275–280

    Article  PubMed  CAS  Google Scholar 

  126. Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132(4):681–687

    Article  PubMed  CAS  Google Scholar 

  127. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255(5505):197–200

    Article  PubMed  CAS  Google Scholar 

  128. Potten CS, Grant HK (1998) The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. Br J Cancer 78(8):993–1003

    Article  PubMed  CAS  Google Scholar 

  129. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981

    Article  PubMed  CAS  Google Scholar 

  130. Rubin H (2001) The role of selection in progressive neoplastic transformation. Adv Cancer Res 83:159–207

    Article  PubMed  CAS  Google Scholar 

  131. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228

    Article  PubMed  CAS  Google Scholar 

  132. Beckman RA, Loeb LA (2006) Efficiency of carcinogenesis with and without a mutator mutation. Proc Natl Acad Sci USA 103(38):14140–14145

    Article  PubMed  CAS  Google Scholar 

  133. Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9(9):644–654

    Article  PubMed  CAS  Google Scholar 

  134. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712):643–649

    Article  PubMed  CAS  Google Scholar 

  135. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282

    Article  PubMed  CAS  Google Scholar 

  136. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11(1):25–36

    Article  PubMed  CAS  Google Scholar 

  137. Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180(4):665–672

    Article  PubMed  CAS  Google Scholar 

  138. Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179(2):737–746

    Article  PubMed  CAS  Google Scholar 

  139. Hussein MR, Wood GS (2002) Microsatellite instability and its relevance to cutaneous tumorigenesis. J Cutan Pathol 29(5):257–267

    Article  PubMed  Google Scholar 

  140. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57(21):4749–4756

    PubMed  CAS  Google Scholar 

  141. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257

    PubMed  CAS  Google Scholar 

  142. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  PubMed  CAS  Google Scholar 

  143. Jascur T, Boland CR (2006) Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119(9):2030–2035

    Article  PubMed  CAS  Google Scholar 

  144. Thibodeau SN, French AJ, Roche PC, Cunningham JM, Tester DJ, Lindor NM, Moslein G, Baker SM, Liskay RM, Burgart LJ, Honchel R, Halling KC (1996) Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res 56(21):4836–4840

    PubMed  CAS  Google Scholar 

  145. Hussein MR, Wood GS (2002) Microsatellite instability in human melanocytic skin tumors: an incidental finding or a pathogenetic mechanism? J Cutan Pathol 29(1):1–4

    Article  PubMed  Google Scholar 

  146. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038

    Article  PubMed  CAS  Google Scholar 

  147. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75(6):1215–1225

    Article  PubMed  CAS  Google Scholar 

  148. Garcon G, Dagher Z, Zerimech F, Ledoux F, Courcot D, Aboukais A, Puskaric E, Shirali P (2006) Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicol In Vitro 20(4):519–528

    Article  PubMed  CAS  Google Scholar 

  149. Saint-Georges F, Garcon G, Escande F, Abbas I, Verdin A, Gosset P, Mulliez P, Shirali P (2009) Role of air pollution Particulate Matter (PM(2.5)) in the occurrence of loss of heterozygosity in multiple critical regions of 3p chromosome in human epithelial lung cells (L132). Toxicol Lett 187(3):172–179

    Article  PubMed  CAS  Google Scholar 

  150. Hirose T, Kondo K, Takahashi Y, Ishikura H, Fujino H, Tsuyuguchi M, Hashimoto M, Yokose T, Mukai K, Kodama T, Monden Y (2002) Frequent microsatellite instability in lung cancer from chromate-exposed workers. Mol Carcinog 33(3):172–180

    Article  PubMed  CAS  Google Scholar 

  151. Zienolddiny S, Aguelon AM, Mironov N, Mathew B, Thomas G, Sankaranarayanan R, Yamasaki H (2004) Genomic instability in oral squamous cell carcinoma: relationship to betel-quid chewing. Oral Oncol 40(3):298–303

    Article  PubMed  CAS  Google Scholar 

  152. Parsons BL, Marchant-Miros KE, Delongchamp RR, Verkler TL, Patterson TA, McKinzie PB, Kim LT (2010) ACB-PCR quantification of K-RAS codon 12 GAT and GTT mutant fraction in colon tumor and non-tumor tissue. Cancer Invest 28(4):364–375

    PubMed  CAS  Google Scholar 

  153. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96(15):8681–8686

    Article  PubMed  CAS  Google Scholar 

  154. Teodoridis JM, Hardie C, Brown R (2008) CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett 268(2):177–186

    Article  PubMed  CAS  Google Scholar 

  155. Tanemura A, Terando AM, Sim MS, van Hoesel AQ, de Maat MF, Morton DL, Hoon DS (2009) CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res 15(5):1801–1807

    Article  PubMed  CAS  Google Scholar 

  156. Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T, Midorikawa Y, Nishimura Y, Sakamoto H, Seto Y, Aburatani H, Kaneda A (2010) Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 16(1):21–33

    Article  PubMed  CAS  Google Scholar 

  157. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492

    Article  PubMed  CAS  Google Scholar 

  158. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11(19):6883–6894

    Article  PubMed  CAS  Google Scholar 

  159. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228(4696):187–190

    Article  PubMed  CAS  Google Scholar 

  160. Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74(3):893–899

    Article  PubMed  CAS  Google Scholar 

  161. Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2(2):119–125

    Article  PubMed  Google Scholar 

  162. Avila MA, Carretero MV, Rodriguez EN, Mato JM (1998) Regulation by hypoxia of methionine adenosyltransferase activity and gene expression in rat hepatocytes. Gastroenterology 114(2):364–371

    Article  PubMed  CAS  Google Scholar 

  163. Yanagawa N, Tamura G, Honda T, Endoh M, Nishizuka S, Motoyama T (2004) Demethylation of the synuclein gamma gene CpG island in primary gastric cancers and gastric cancer cell lines. Clin Cancer Res 10(7):2447–2451

    Article  PubMed  CAS  Google Scholar 

  164. Laner T, Schulz WA, Engers R, Muller M, Florl AR (2005) Hypomethylation of the XIST gene promoter in prostate cancer. Oncol Res 15(5):257–264

    PubMed  CAS  Google Scholar 

  165. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609

    Article  PubMed  CAS  Google Scholar 

  166. Kampranis SC, Tsichlis PN (2009) Histone demethylases and cancer. Adv Cancer Res 102:103–169

    Article  PubMed  CAS  Google Scholar 

  167. Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625(1–3):131–142

    Article  PubMed  CAS  Google Scholar 

  168. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386(6627):761–763

    Article  PubMed  CAS  Google Scholar 

  169. Bardelli A, Cahill DP, Lederer G, Speicher MR, Kinzler KW, Vogelstein B, Lengauer C (2001) Carcinogen-specific induction of genetic instability. Proc Natl Acad Sci USA 98(10):5770–5775

    Article  PubMed  CAS  Google Scholar 

  170. Palmero EI, Achatz MI, Ashton-Prolla P, Olivier M, Hainaut P (2010) Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr Opin Oncol 22(1):64–69

    Article  PubMed  CAS  Google Scholar 

  171. Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 37(Database issue): D793–D796

    Google Scholar 

  172. Cazier JB, Tomlinson I (2010) General lessons from large-scale studies to identify human cancer predisposition genes. J Pathol 220(2):255–262

    PubMed  CAS  Google Scholar 

  173. Gresner P, Gromadzinska J, Wasowicz W (2007) Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer 57(1):1–25

    Article  PubMed  Google Scholar 

  174. Cote ML, Wenzlaff AS, Bock CH, Land SJ, Santer SK, Schwartz DR, Schwartz AG (2007) Combinations of cytochrome P-450 genotypes and risk of early-onset lung cancer in Caucasians and African Americans: a population-based study. Lung Cancer 55(3):255–262

    Article  PubMed  CAS  Google Scholar 

  175. Schwartz AG, Prysak GM, Bock CH, Cote ML (2007) The molecular epidemiology of lung cancer. Carcinogenesis 28(3):507–518

    Article  PubMed  CAS  Google Scholar 

  176. Cokkinides V, Bandi P, McMahon C, Jemal A, Glynn T, Ward E (2009) Tobacco control in the United States–recent progress and opportunities. CA Cancer J Clin 59(6):352–365

    Article  PubMed  Google Scholar 

  177. Lubin JH, Alavanja MC, Caporaso N, Brown LM, Brownson RC, Field RW, Garcia-Closas M, Hartge P, Hauptmann M, Hayes RB, Kleinerman R, Kogevinas M, Krewski D, Langholz B, Letourneau EG, Lynch CF, Malats N, Sandler DP, Schaffrath-Rosario A, Schoenberg JB, Silverman DT, Wang Z, Wichmann HE, Wilcox HB, Zielinski JM (2007) Cigarette smoking and cancer risk: modeling total exposure and intensity. Am J Epidemiol 166(4):479–489

    Article  PubMed  Google Scholar 

  178. Robles AI, Linke SP, Harris CC (2002) The p53 network in lung carcinogenesis. Oncogene 21(45):6898–6907

    Article  PubMed  CAS  Google Scholar 

  179. Olivier M, Hollstein M, Hainaut P (2010) TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harb Perspect Biol 2(1):a001008

    Article  PubMed  CAS  Google Scholar 

  180. Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274(5286):430–432

    Article  PubMed  CAS  Google Scholar 

  181. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54(18):4855–4878

    PubMed  CAS  Google Scholar 

  182. Bennett WP, Hussain SP, Vahakangas KH, Khan MA, Shields PG, Harris CC (1999) Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer. J Pathol 187(1):8–18

    Article  PubMed  CAS  Google Scholar 

  183. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350(6317):427–428

    Article  PubMed  CAS  Google Scholar 

  184. Soini Y, Chia SC, Bennett WP, Groopman JD, Wang JS, DeBenedetti VM, Cawley H, Welsh JA, Hansen C, Bergasa NV, Jones EA, DiBisceglie AM, Trivers GE, Sandoval CA, Calderon IE, Munoz Espinosa LE, Harris CC (1996) An aflatoxin-associated mutational hotspot at codon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico. Carcinogenesis 17(5):1007–1012

    Article  PubMed  CAS  Google Scholar 

  185. Gouas D, Shi H, Hainaut P (2009) The aflatoxin-induced TP53 mutation at codon 249 (R249S): biomarker of exposure, early detection and target for therapy. Cancer Lett 286(1):29–37

    Article  PubMed  CAS  Google Scholar 

  186. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88(22):10124–10128

    Article  PubMed  CAS  Google Scholar 

  187. Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63(1–3):8–18

    Article  PubMed  CAS  Google Scholar 

  188. Runger TM (2007) How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses. J Invest Dermatol 127(9):2103–2105

    Article  PubMed  CAS  Google Scholar 

  189. Fang JL, Vaca CE (1997) Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis 18(4):627–632

    Article  PubMed  CAS  Google Scholar 

  190. Vaca CE, Nilsson JA, Fang JL, Grafstrom RC (1998) Formation of DNA adducts in human buccal epithelial cells exposed to acetaldehyde and methylglyoxal in vitro. Chem Biol Interact 108(3):197–208

    Article  PubMed  CAS  Google Scholar 

  191. Clemens DL, Forman A, Jerrells TR, Sorrell MF, Tuma DJ (2002) Relationship between acetaldehyde levels and cell survival in ethanol-metabolizing hepatoma cells. Hepatology 35(5):1196–1204

    Article  PubMed  CAS  Google Scholar 

  192. Molina PE, Hoek JB, Nelson S, Guidot DM, Lang CH, Wands JR, Crawford JM (2003) Mechanisms of alcohol-induced tissue injury. Alcohol Clin Exp Res 27(3):563–575

    Article  PubMed  Google Scholar 

  193. el Ghissassi F, Barbin A, Nair J, Bartsch H (1995) Formation of 1,N6-ethenoadenine and 3,N4-ethenocytosine by lipid peroxidation products and nucleic acid bases. Chem Res Toxicol 8(2):278–283

    Article  PubMed  CAS  Google Scholar 

  194. Giovannucci E (2004) Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J Nutr 134(9):2475S–2481S

    PubMed  CAS  Google Scholar 

  195. Giovannucci E (2002) Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr 132(8 Suppl):2350S–2355S

    PubMed  CAS  Google Scholar 

  196. Leiter U, Garbe C (2008) Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight. Adv Exp Med Biol 624:89–103

    Article  PubMed  Google Scholar 

  197. Ridley AJ, Whiteside JR, McMillan TJ, Allinson SL (2009) Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol 85(3):177–195

    Article  PubMed  CAS  Google Scholar 

  198. Matsunaga T, Hieda K, Nikaido O (1991) Wavelength dependent formation of thymine dimers and (6–4) photoproducts in DNA by monochromatic ultraviolet light ranging from 150 to 365 nm. Photochem Photobiol 54(3):403–410

    Article  PubMed  CAS  Google Scholar 

  199. Lacour JP (2002) Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 146(Suppl 61):17–19

    Article  PubMed  CAS  Google Scholar 

  200. Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, Jones AM (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci USA 101(14):4954–4959

    Article  PubMed  CAS  Google Scholar 

  201. Kuhn C, Hurwitz SA, Kumar MG, Cotton J, Spandau DF (1999) Activation of the insulin-like growth factor-1 receptor promotes the survival of human keratinocytes following ultraviolet B irradiation. Int J Cancer 80(3):431–438

    Article  PubMed  CAS  Google Scholar 

  202. Lewis DA, Spandau DF (2007) UVB activation of NF-kappaB in normal human keratinocytes occurs via a unique mechanism. Arch Dermatol Res 299(2):93–101

    Article  PubMed  CAS  Google Scholar 

  203. Lewis DA, Yi Q, Travers JB, Spandau DF (2008) UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol Biol Cell 19(4):1346–1353

    Article  PubMed  CAS  Google Scholar 

  204. Tavakkol A, Elder JT, Griffiths CE, Cooper KD, Talwar H, Fisher GJ, Keane KM, Foltin SK, Voorhees JJ (1992) Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J Invest Dermatol 99(3):343–349

    Article  PubMed  CAS  Google Scholar 

  205. Ferber A, Chang C, Sell C, Ptasznik A, Cristofalo VJ, Hubbard K, Ozer HL, Adamo M, Roberts CT Jr, LeRoith D et al (1993) Failure of senescent human fibroblasts to express the insulin-like growth factor-1 gene. J Biol Chem 268:17883–17888

    PubMed  CAS  Google Scholar 

  206. Agents Classified by the IARC Monographs 1–100, Updated 30 August 2010; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed November 2010

  207. Hecht SS, Carmella SG, Murphy SE, Akerkar S, Brunnemann KD, Hoffmann D (1993) A tobacco-specific lung carcinogen in the urine of men exposed to cigarette smoke. N Engl J Med 329(21):1543–1546

    Article  PubMed  CAS  Google Scholar 

  208. Smoking and Tobacco Control Monograph 10, Health Effects of Exposure to Environmental Tobacco Smoke (August 1999), National Cancer Institute, National Institutes of Health, Bethesda, MD

    Google Scholar 

  209. Alexandrov K, Rojas M, Kadlubar FF, Lang NP, Bartsch H (1996) Evidence of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in human colon mucosa. Carcinogenesis 17(9):2081–2083

    Article  PubMed  CAS  Google Scholar 

  210. Hecht SS, Hoffmann D (1988) Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis 9(6):875–884

    Article  PubMed  CAS  Google Scholar 

  211. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordonez GR, Mudie L J, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190

    Article  PubMed  CAS  Google Scholar 

  212. McCullough ML, Giovannucci EL (2004) Diet and cancer prevention. Oncogene 23(38):6349–6364

    Article  PubMed  CAS  Google Scholar 

  213. Kensler TW, Groopman JD (2009) Is it time to advance the chemoprevention of environmental carcinogenesis with microdosing trials? Cancer Prev Res (Phila Pa) 2(12):1003–1007

    Article  CAS  Google Scholar 

  214. Ju J, Picinich SC, Yang Z, Zhao Y, Suh N, Kong AN, Yang CS (2010) Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis 31(4):533–542

    Article  PubMed  CAS  Google Scholar 

  215. Fowke JH (2007) Head and neck cancer: a case for inhibition by isothiocyanates and indoles from cruciferous vegetables. Eur J Cancer Prev 16(4):348–356

    Article  PubMed  CAS  Google Scholar 

  216. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, V.L. (2013). Environmental Toxicology: Carcinogenesis. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_10

Download citation

Publish with us

Policies and ethics