Skip to main content

Cooperation Between Underwater Vehicles

  • Chapter
  • First Online:
Marine Robot Autonomy

Abstract

The underwater environment intensifies difficulties inherent in cooperation between autonomous vehicles by dramatically reducing their ability to communicate with each other. Lack of communication drives the need for decentralized control which in turn requires a shared view of the tasks and their status as the mission progresses. Decision-making, especially task allocation, requires low-bandwidth mechanisms for negotiation and achieving consensus. Strategies to obtain this low-bandwidth decision-making and control rely on both the availability of significant a priori information about the mission and tasks and careful design of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assumes a ground vehicle with a turn radius of 30 m and sensor range of 60 m traveling at 8.94 m/s (20 mph) and an aerial vehicle with a turn radius of 50 m and sensor range of 400 m traveling at 13.41 m/s (30 mph), which both require that a decision be made at around 3.5 s from impact, and an underwater vehicle with a turn radius of 15 m and sensor range of 60 m traveling at 2.06 m/s (4 kts), which requires that a decision be made at 7.3 s from impact.

  2. 2.

    Total planning time for all three platform types is less than 30 s.

  3. 3.

    Stigmergic. Communication via alteration in the environment, as ant pheromone trails provide information about ant behavior to other ants.

  4. 4.

    MOOS, the “Mission Oriented Operating Suite,” is a software architecture for autonomous mobile robots, used on ground, surface, and underwater systems. More detail is available at the Oxford Mobile Robotics Group: http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/Introduction.

References

  1. Albus JS (2002) Metrics and performance measures for intelligent unmanned ground vehicles. In: Proceedings of the performance metrics for intelligent systems (PerMIS) workshop

    Google Scholar 

  2. Arslan G, Marden JR, Shamma JS (2007) Autonomous vehicle-target assignment: a game-theoretical formulation. J Dyn Syst Meas Control 129(5):584–596

    Google Scholar 

  3. Aulinas J, Carreras M, Lladó X, Salvi J, García R, Prados R, Petillot YR (2011) Feature extraction for underwater visual SLAM. In: Proceedings of OCEANS 2011-Europe

    Google Scholar 

  4. Balcan MF, Blum A, Hartline JD, Mansour Y (2008) Reducing mechanism design to algorithm design via machine learning. J Comput Syst Sci 74(8):1245–1270. doi:10.1016/j.jcss.2007.08.002

    Google Scholar 

  5. Barisic M, Vukic Z, Omerdic E (2009) Introduction of rotors to a virtual potentials uuv trajectory planning framework. In: Proceedings of IFAC (International Federation of Automatic Control) conference

    Google Scholar 

  6. Been R, Hughes DT, Vermeij A (2008) Heterogeneous underwater networks for ASW: technology and techniques. In: Undersea Defense Technology-Europe

    Google Scholar 

  7. Bridges A (2011) Mars rovers get bandwidth boost. Associated Press, New York. http://www.msnbc.msn.com/id/4269545/ns/technology_and_science-space/

  8. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Rob Autom 2(1):14–23. doi:10.1109/JRA.1986.1087032

    Google Scholar 

  9. Brumitt B, Stentz A, Hebert M, Group TCU (2001) Autonomous driving with concurrent goals and multiple vehicles: Mission planning and architecture. Auton Robots 11(2):103–115. doi:10.1023/A:1011266907321

    Google Scholar 

  10. Casalino G, Turetta A, Simetti E, Caiti A (2010) RT2: a real-time ray-tracing method of acoustic distance evaluations among cooperating AUVs. In: Proceedings of OCEANS 2010 IEEE-Sydney, pp 1–8. Sydney, NSW, Australia. doi: 10.1109/OCEANSSYD.2010.5603869

    Google Scholar 

  11. Conradt L, List C (2009) Group decisions in humans and animals: a survey. Philos Trans R Soc B 364:719–742. doi: 10.1098/rtsb.2008.0276

    Google Scholar 

  12. Cosci M, Caiti A, Blondel P, Jayasundere N (2005) A potential algorithm for target classification in bistatics sonar geometries. In: Pace N, Blondel P (eds) Boundary influences in high frequency, shallow water acoustics, pp 367–374. University of Bath Press, UK

    Google Scholar 

  13. Crandall JW, Cummings ML (2007) Developing performance metrics for the supervisory control of multiple robots. In: HRI ’07 Proceedings of the ACM/IEEE international conference on human-robot interaction. doi: 10.1145/1228716.1228722. http://doi.acm.org/10.1145/1228716.1228722

  14. Crees T, Kaminski C, Ferguson J, Laframboise JM, Forrest A, Williams J, MacNeil E, Hopkin D, Peterson R (2010) UNCLOS under ice survey-an historic AUV deployment in the canadian high arctic. In: Proceedings of OCEANS 2010, pp 1–8. Seattle, WA. doi: 10.1109/OCEANS2010.5664438

    Google Scholar 

  15. Crespi V, Galstyan A, Lerman K (2008) Top-down vs bottom-up methodologies in multi-agent system design. Auton Robots 24:303–313. doi: 10.1007/s10514-007-9080-5

    Google Scholar 

  16. Crosbie BP, Anderson M, Wolbrecht E, Canning J, Edwards DB (2010) Synchronous navigation of AUVs using WHOI micro-modem 13-bit communications. In: Proceedings of OCEANS 2010, pp 1–5. doi: 10.1109/OCEANS.2010.5664459

    Google Scholar 

  17. Das J, Py F, Maugham T, Messié M, Ryan J, Rajan K, Sukhatme GS (2010) Simultaneous tracking and sampling of dynamic oceanographic features with autonomous underwater vehicles and lagrangian drifters. In: 12th international symposium on experimental robotics

    Google Scholar 

  18. Djapic V, Nad D (2010) Using collaborative autonomous vehicles in mine countermeasures. In: Proceedings of OCEANS 2010 IEEE-Sydney, pp 1–7. doi: 10.1109/OCEANSSYD.2010.5603969

    Google Scholar 

  19. Dudek G, Roy N (2007) Multi-robot rendezvous in unknown environments or what to do when you’re lost at the zoo. In: Proceedings of AAAI 2007

    Google Scholar 

  20. Dunbabin M, Corke P, Vascilescu I, Rus D (2006) Data muling over underwater wireless sensor networks using autonomous underwater vehicles. In: IEEE international conference on robotics and automation (ICRA), pp 2091–2098

    Google Scholar 

  21. Edwards DB, Bean TA, Odell DL, Anderson MJ (2004) A leader-follower algorithm for multiple AUV formations. In: 2004 IEEE/OES autonomous underwater vehicles, pp 40–46. doi: 10.1109/AUV.2004.1431191

    Google Scholar 

  22. Fallon MF, Kaess M, Johannsson H, Leonard JJ (2011) Efficient AUV navigation fusing acoustic ranging and side-scan sonar. In: IEEE international conference on robotics and automation (ICRA), pp 2398–2405. doi: 10.1109/ICRA.2011.5980302

    Google Scholar 

  23. Ferguson D, Stentz AT (2006) Using interpolation to improve path planning: the field d* algorithm. J Field Robot 23(2):79–101

    Google Scholar 

  24. Ferguson J (2009) Under-ice seabed mapping with AUVs. In: Proceedings of OCEANS 2009-Europe, pp 1–6. Bremen. doi: 10.1109/OCEANSE.2009.5278204

    Google Scholar 

  25. Fiorelli E, Leonard NE, Bhatta P, Paley D (2004) Multi-AUV control and adaptive sampling in Monterey Bay. In: Proceedings of IEEE autonomous underwater vehicles 2004: workshop on multiple AUV operations (AUV04)

    Google Scholar 

  26. Franks NR, Pratt SC, Mallon EB, Britton NF, Sumpter DJT (2002) Information flow, opinion polling and collective intelligence in house-hunting social insects. Philos Trans: Biol Sci 357:1567–1583 (1427, Information and Adaptive Behavior). http://www.jstor.org/stable/3558092

  27. Fredslund J, Matarić MJ (2002) A general algorithm for robot formations using local sensing and minimal communication. IEEE Trans Robot Autom 18(5):837–846. doi: 10.1109/TRA.2002.803458

    Google Scholar 

  28. Gerkey BP, Matarić MJ (2002) Sold!: auction methods for multirobot coordination. IEEE Trans Robot Autom 18(5):758–768

    Google Scholar 

  29. Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. Int J Rob Res 23(9):939–954. doi: 10.1177/0278364904045564

    Google Scholar 

  30. Hagen PE, Fossum TG (2005) Applications of AUVs with SAS. In: Proceedings of OCEANS 2005, pp 1–4. Quebec City, QC, Canada. doi: 10.1109/OCEANS.2008.5152013

    Google Scholar 

  31. Hamilton MJ, Kemna S, Hughes D (2010) Antisubmarine warfare applications for autonomous underwater vehicles: the GLINT09 sea trial results. J Field Robot 27(6):890–902. doi: 10.1002/rob.20362

    Google Scholar 

  32. de Hoog J, Cameron S, Visser A (2010) Dynamic team hierarchies in communication-limited multi-robot exploration. In: 2010 IEEE workshop on safety security and rescue robotics, pp 1–7. doi: 10.1109/SSRR.2010.5981573

    Google Scholar 

  33. IEEE: 802.11-2007 IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements-part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Standard (2007). doi: 10.1109/IEEESTD.2007.373646. http://ieeexplore.ieee.org/servlet/opac?punumber=4248376

  34. Jaffe J, Schergers C (2006) Sensor networks of freely drifting autonomous underwater explorers. In: WUWNet ’06 proceedings of the 1st ACM international workshop on underwater networks. ACM Press. doi: 10.1145/1161039.1161058

    Google Scholar 

  35. Johnson M, Bradshaw J, Feltovich P, Jeffers R, Jung H, Uszok A (2006) A semantically rich policy based approach to robot control. In: Proceedings of the international conference on informatics in control, automation and robotics

    Google Scholar 

  36. Jung YS, Lee KW, Lee BH (2008) Advances in sea coverage methods using autonomous underwater vehicles (AUVs). In: Recent advances in multi-robot systems, pp 69–100. I-Tech Education and Publishing, Vienna, Austria

    Google Scholar 

  37. Kaess M, Johannsson H, Englot B, Hover F, Leonard J (2010) Towards autonomous ship hull inspection using the bluefin HAUV. In: Ninth international symposium on technology and the mine problem. http://www.cc.gatech.edu/~kaess/pub/Kaess10istmp.pdf

  38. Kemna S, Hamilton MJ, Hughes DT, LePage KD (2011) Adaptive autonomous underwater vehicles for littoral surveillance. Intell Serv Robot 4:245–258. doi: 10.1007/s11370-011-0097-4

    Google Scholar 

  39. Kinsey JC, Eustice RM, Whitcomb LL (2006) A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC conference of manoeuvering and control of marine craft. Lisbon, Portugal

    Google Scholar 

  40. Leonard NE, Paley DA, Davis RE, Fratantoni DM, Lekien F, Zhang F (2010) Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in monterey bay. J Field Robot 27(6):718–740. doi: 10.1002/rob.20366

    Google Scholar 

  41. Lerman K, Jones C, Galstyan A, Matarić MJ (2006) Analysis of dynamic task allocation in multi-robot systems. Int J Robot Res 25(3):225–241. doi: 10.1177/0278364906063426

    Google Scholar 

  42. Li B, Huang J, Zhou S, Ball K, Stojanovic M, Freitag L, Willett P (2009) MIMO-OFDM for high rate underwater acoustic communications. IEEE J Oceanic Eng 34(4):634–644. doi: 10.1109/JOE.2009.2032005

    Google Scholar 

  43. Marden JR, Arslan G, Shamma JS (2009) Cooperative control and potential games. J Syst Man Cybern 39(6):1393–1407

    Google Scholar 

  44. Matarić MJ, Sukhatme GS, Östergaard EH (2003) Multi-robot task allocation in uncertain environments. Auton Robots 14:255–263

    Google Scholar 

  45. Meghjani M, Dudek G (2011) Combining multi-robot exploration and rendezvous. In: Proceedings of the 8th Canadian conference on computer and robot vision (CRV’11), pp 80–85. St. John’s, Newfoundland, Canada

    Google Scholar 

  46. Newman P, Ho K (2005) Slam-loop closing with visually salient features. In: Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), pp 635–642. doi: 10.1109/ROBOT.2005.1570189

    Google Scholar 

  47. Okamoto A, Feeley JJ, Edwards DB, Wall RW (2004) Robust control of a platoon of underwater autonomous vehicles. In: Proceedings of OCEANS 2004-North America

    Google Scholar 

  48. Palomeras M, Garcia JC, Prats M, Fernández JJ, Sanz PJ, Ridao P (2010) A distributed architecture for enabling autonomous underwater intervention missions. In: 4th annual IEEE international system conference. San Diego, CA, USA

    Google Scholar 

  49. Partan J, Kurose J, Levine BN (2006) A survey of practical issues in underwater networks. In: Proceedings of the ACM international workshop on underwater networks, pp 17–24. ACM Press. doi: http://doi.acm.org/10.1145/1161039.1161045

  50. Pentzer J, Crosbie BP, Bean T, Canning J, Frenzel J, Anderson M, Edwards D (2010) Measurement of magnetic field using collaborative AUVs. In: Proceedings of OCEANS 2010 IEEE-Sydney, pp 1–7. doi: 10.1109/OCEANSSYD.2010.5603655

    Google Scholar 

  51. Pirjanian P, Huntsberger TL, Trebi-Ollennu A, Aghazarian H, Das H, Joshi SS, Schenker PS (2000) CAMPOUT: a control architecture for multi-robot planetary outposts. In: Proceedings of the SPIE symposium on sensor fusion and decentralized control in robotic systems III. Boston, MA

    Google Scholar 

  52. Porfiri M, Roberson DG, Stilwell DJ (2006) Environmental tracking and formation control of a platoon of autonomous vehicles subject to limited communication. In: IEEE international conference on robotics and automation (ICRA), pp 1050–4729. doi: 10.1109/ROBOT.2006.1641775

    Google Scholar 

  53. Rice J, Creber B, Fletcher C, Baxley P, Rogers K, McDonald K, Rees D, Wolf M, Merriam S, Mehio R, Proakis J, Scussel K, Porta D, Baker J, Hardiman J, Green D (2000) Evolution of seaweb underwater acoustic networking. In: Proceedings of OCEANS 2000, vol 3, pp 2007–2017. Providence, RI. doi: 10.1109/OCEANS.2000.882235

    Google Scholar 

  54. Ridao P, Carreras M, Ribas D, García R (2010) Visual inspection of hydroelectric dams using an autonomous underwater vehicle. J Field Robot 27(6):759–778. doi: 10.1002/rob.20351

    Google Scholar 

  55. Sariel S, Balch T, Stack J (2006) Distributed multi-AUV coordination in naval mine countermeasure missions. Technical report, Georgia Institute of Technology. http://hdl.handle.net/1853/8722

  56. Sattar J, Dudek G (2009) Underwater human-robot interaction via biological motion identification. In: Proceedings of robotics: science and systems V, Seattle

    Google Scholar 

  57. Schmidt H, Leonard J, Edwards JR, Liu TC (2004) Sub-seabed mapping using AUV-based multi-statics acoustic sensing and adaptive control. In: International congress on the applications of recent advances in underwater detection and survey techniques to underwater archaeology

    Google Scholar 

  58. Shafer AJ, Benjamin MR, Leonard JJ, Curcio J (2008) Autonomous cooperation of heterogeneous platforms for sea-based search tasks. In: Proceedings of MTS/IEEE OCEANS 2008. Quebec City, QC, Canada

    Google Scholar 

  59. Smith RN, Chao Y, Li PP, Caron DA, Jones BH, Sukhatme GS (2010) Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int J Robot Res 29(12):1475–1497. doi: 10.1177/0278364910377243. http://cres.usc.edu/cgi-bin/print_pub_details.pl?pubid=646

    Google Scholar 

  60. Song HC, Sabra K, Kuperman WA, Hodgkiss WS (2009) Multi-static detection and localization of buried targets using synthetic aperture iterative time-reversal processing. Technical report, Scripps Institution of Oceanography / DTIC. http://handle.dtic.mil/100.2/ADA494990

  61. Sotzing CC, Lane DM (2010) Improving the coordination efficiency of limited communication multi-AUV operations using a multi-agent architecture. J Field Robot 27(4):412–429. doi: 10.1002/rob.20340

    Google Scholar 

  62. Spears WM, Spears DF, Kerr W, Hettiarachchi S, Zarzhitsky D (2005) Optimizing interaction potentials for multi-agent surveillance: final report. Technicalreport, UW-CS-AP-WMS-ARO-1, University of Wyoming Computer Science Department. http://www.stormingmedia.us/92/9294/A929434.html

  63. Stack JR, Smith CM, Hyland JC (2004) Efficient reacquisition path planning for multiple autonomous underwater vehicles. In: Proceedings of OCEANS 2004-North America, vol 3, pp 1564–1569. Kobe. doi: 10.1109/OCEANS.2004.1406355

    Google Scholar 

  64. Stilwell DJ, Bishop BE, Sylvester CA (2005) Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles. IEEE Trans Syst Man Cybern-Part B: Cybern 35(4):842–848. doi: 10.1109/TSMCB.2005.846643

    Google Scholar 

  65. Stokey RP, Freitag LE, Grund MD (2005) A compact control language for auv acoustic communication. In: Proceedings of OCEANS 2005-Europe, pp 1133–1137. doi: 10.1109/OCEANSE.2005.1513217

    Google Scholar 

  66. Tang F, Parker LE (2005) Coalescent multi-robot teaming through asymtre: a formal analysis: a formal analysis. In: Proceedings of the 12th international conference on advanced robotics, 2005, ICAR ’05, pp 817–824. doi: 10.1109/ICAR.2005.1507502

    Google Scholar 

  67. Tang F, Parker LE (2007) A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market-based task allocation. In: Proceedings of the 2007 IEEE international conference on robotics and automation (ICRA). doi: 1-4244-0602-1/07

    Google Scholar 

  68. Tardioli D, Mosteo AR, Riazuelo L, J.L.V (2010) Enforcing network connectivity in robot team missions. Int J Robot Res 29(4):460–480. doi: 10.1177/0278364909358274

    Google Scholar 

  69. Tye C, Kinney M, Frenzel J, O’Rourke M, Edwards D (2009) A MOOS module for autonomous underwater vehicle fleet control. In: Proceedings of OCEANS 2009, MTS/IEEE Biloxi, pp 1–6. http://www.mrc.uidaho.edu/cisr/pubs/jff_biloxi_09.pdf

  70. Vasilescu I, Kotay K, Rus D, Dunbabin M, Corke P (2005) Data collection, storage, and retrieval with an underwater sensor network. In: SenSys ’05 proceedings of the 3rd international conference on embedded networked sensor systems. ACM Press, New York, NY. doi: 10.1145/1098918.1098936

    Google Scholar 

  71. Walter M, Leonard J (2004) An experimental investigation of cooperative SLAM. In: Proceedings of 5th IFAC (International Federation of Automatic Control) symposium on intelligent autonomous vehicles. Lisbon, Portugal

    Google Scholar 

  72. Warren CW (1990) A technique for autonomous underwater vehicle route planning. IEEE J Oceanic Eng 15(3):199–204. doi: 10.1109/48.107148

    Google Scholar 

  73. Williams S, Mahon I (2004) Simultaneous localisation and mapping on the great barrier reef. In: IEEE international conference on robotics and automation (ICRA), pp 1771–1776. doi: 10.1009/ROBOT.2004.1308080

    Google Scholar 

  74. Woods Hole Oceanographic Institution: WHOI acoustic communications: Micro-modem (2006). http://acomms.whoi.edu/umodem/. (Hardware specifications)

  75. Yoerger DR, Jakuba M, Bradley AM, Bingham B (2007) Techniques for deep sea near bottom survey using and autonomous underwater vehicle. Int J Robot Res 26(1):41–54. doi: 10.1177/0278364907073773

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Redfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Redfield, S. (2013). Cooperation Between Underwater Vehicles. In: Seto, M. (eds) Marine Robot Autonomy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5659-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5659-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5658-2

  • Online ISBN: 978-1-4614-5659-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics