Skip to main content

Sub- and Supercritical Water Technology for Biofuels

  • Chapter
  • First Online:

Abstract

One of the major challenges in utilization of biomass is its high moisture content and variable composition. The conventional thermochemical conversion processes such as pyrolysis and gasification require dry biomass for production of biofuels. Sub- and supercritical water (critical point: 374°C, 22.1°MPa) technology, which can utilize wet biomass, capitalizes on the extraordinary solvent properties of water at elevated temperature for converting biomass to high energy density fuels and functional carbonaceous materials. Here, water acts as reactant as well as reaction medium in performing hydrolysis, depolymerization, dehydration, decarboxylation, and many other chemical reactions. One of the advantages is that the large parasitic energy losses that can consume much of the energy content of the biomass for moisture removal are avoided. In sub- and supercritical water-based processes, water is kept in liquid or supercritical phase by applying pressure greater than the vapor pressure of water. Thus, latent heat required for phase change of water from liquid to vapor phase (2.26 MJ/kg of water) is not needed. For a typical 250°C subcritical water process, the energy requirement to heat water from ambient condition to the reaction temperature is about 1 MJ/kg, equivalent to 6–8% of energy content of dry biomass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen SG, Kam LC et al (1996) Fractionation of sugar cane with hot, compressed, liquid water. Ind Eng Chem Res 35(8):2709–2715

    CAS  Google Scholar 

  2. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    CAS  Google Scholar 

  3. Baeza J, Freer J (2001) Chemical characterization of wood and its components. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, Inc, New York, pp 275–384

    Google Scholar 

  4. Balat M (2008) Mechanisms of thermochemical biomass conversion processes, part 1: reactions of pyrolysis. Energ Sourc, Part A 30:620–635

    CAS  Google Scholar 

  5. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    CAS  Google Scholar 

  6. Behrendt F, Neubauer Y et al (2008) Direct liquefaction of biomass. Chem Eng Technol 31(5):667–677

    CAS  Google Scholar 

  7. Bergius F, Specht H (1913) Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle. Verlag Wilhelm Knapp, Halle an der Saale, p 58

    Google Scholar 

  8. Biermann CJ (1996) Handbook of pulping and paper making. Academic, San Diego

    Google Scholar 

  9. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    CAS  Google Scholar 

  10. Bruun S, Luxhoi J (2008) Is biochar production really carbon-negative? Environ Sci Technol 42(5):1388

    CAS  Google Scholar 

  11. Byrd AJ, Pant KK et al (2007) Hydrogen production from Glucose using Ru/Al2O3 catalyst in supercritical water. Ind Eng Chem Res 46(11):3574–3579

    CAS  Google Scholar 

  12. Calzavara Y, Joussot-Dubien C et al (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energ Convers Manage 46:615–631

    CAS  Google Scholar 

  13. Chakinala AG, Brilman DWF et al (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49(3):1113–1122

    CAS  Google Scholar 

  14. Chen P, Min M et al (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2(4):1–29

    Google Scholar 

  15. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    CAS  Google Scholar 

  16. Chornet E, Overend RP (1985) Biomass liquefaction: an overview. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier Applied Science, New York, pp 967–1002

    Google Scholar 

  17. Chronakis IS (2000) Biosolar proteins from aquatic algae. In: Doxastakis G, Kiosseoglou V (eds) Developments in food science, vol 41. Elsevier, Amsterdam, pp 39–75

    Google Scholar 

  18. Deguchi S, Tsujii K et al (2008) Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–196

    CAS  Google Scholar 

  19. Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energ Convers Manage 41:633–646

    CAS  Google Scholar 

  20. Demirbaş A (2006) Oily products from mosses and algae via pyrolysis. Energ Sourc 28:933–940

    Google Scholar 

  21. Diaz MJ, Cara C et al (2010) Hydrothermal pre-treatment of rapeseed straw. Bioresour Technol 101(2010):2428–2435

    CAS  Google Scholar 

  22. Dinjus E, Kruse A (2004) Hot compressed water-a suitable and sustainable solvent and reaction medium? J Phys Condens Matter 16:S1161–S1169

    CAS  Google Scholar 

  23. DOE US (2010) National Algal Biofuels Technology Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Maryland

    Google Scholar 

  24. Dumitriu S (2004) Preparation and properties of cellulose bicomponent fibers. CRC Press, Boca Raton

    Google Scholar 

  25. Eckert CA, Knutson BL et al (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383(6598):313–318

    CAS  Google Scholar 

  26. Elliott DC (2008) Catalytic hydrothemal gasification of biomass. Biofuels Bioprod Bioref 2:254–265

    CAS  Google Scholar 

  27. Elliott DC, Sealock LJ et al (1993) Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res 32(8):1542–1548

    CAS  Google Scholar 

  28. Falkehag SI (1975) Synthesis of phenolic polymer. Appl Polym Symp 28:247–257

    CAS  Google Scholar 

  29. Fang Z, Sato T et al (2008) Reaction chemistry and phase behaviour of lignin in high-temperature and super critical water. Bioresour Technol 99:3424–3430

    CAS  Google Scholar 

  30. Farrell AE, Plevin RJ et al (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    CAS  Google Scholar 

  31. Franck EU (1987) Fluids at high pressures and temperatures. Pure Appl Chem 59(1):25–34

    CAS  Google Scholar 

  32. Garrote G, Dominguez H et al (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff 57(1999):191–202

    CAS  Google Scholar 

  33. Ghose TK, Roychoudhury PK, Ghosh P (1984) Simultaneous saccharification and fermentation (SSF) of lignocellulosics to ethanol under vacuum cycling and step feeding. Biotechnol Bioeng 26:377–381

    CAS  Google Scholar 

  34. Golueke CG, Oswald WJ et al (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47–55

    CAS  Google Scholar 

  35. Gourdiaan F, Peferoen D (1990) Liquid fuels from biomass via a hydrothermal process. Chem Eng Sci 45:2729–2734

    Google Scholar 

  36. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    CAS  Google Scholar 

  37. Greenwell HC, Laurens LML et al (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–26

    CAS  Google Scholar 

  38. Gupta R, Lee YY (2008) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102(6):1570–1581

    Google Scholar 

  39. Gupta RB, Demirbas A (2010) Introduction. Gasoline, Diesel and Ethanol Biofuels from Grasses and Plants. Cambridge University Press, London, pp 1–24

    Google Scholar 

  40. Hao XH, Guo LJ et al (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. J Hydrogen Energy 28:55–64

    CAS  Google Scholar 

  41. Heitz M, Carrasco F et al (1986) Generalized correlations for aqueous liquefaction of lignocellulosics. Can J Chem Eng 64:647–650

    CAS  Google Scholar 

  42. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    CAS  Google Scholar 

  43. Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DC

    Google Scholar 

  44. Hu B, Yu S-H et al (2008) Functional carboneceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans 40:5414–5423

    Google Scholar 

  45. Huber GW, Cheda JN et al (2005) Production of liquid alkanes by aqueous processing of biomass derived carbohydrates. Science 308:1446–1450

    CAS  Google Scholar 

  46. Huber GW, Iborra S et al (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044

    CAS  Google Scholar 

  47. Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. In: Ben-Amotz JEWPA, Subba Rao DV (eds) The Alga Dunaliella: biodiversity, Physiology, Genomics, and Biotechnology, vol 14. Science Publishers, New Hampshire, pp 445–474

    Google Scholar 

  48. Hui J, Youjun L et al (2010) Hydrogen production by coal gasification in supercritical water with a fluidised bed reactor. Int J Hydrogen Energy 35:7151–7160

    Google Scholar 

  49. Jong WD (2009) Sustainable hydrogen production by thermochemical biomass processing. In: Gupta RB (ed) Hydrogen fuel: production, transport and storage. CRC Press, Boca Raton, pp 185–225

    Google Scholar 

  50. Kabyemela BM, Adschiri R et al (1997) Rapid and selctive conversion of glucose to erythrose in supercritical water. Ind Eng Chem Res 36:5063–5067

    CAS  Google Scholar 

  51. Kadam KL, Chin CY et al (2009) Continuous biomass fractionation process for producing ethanol and low-molecular-weight lignin. Environ Prog Sustain Energy 28(1):89–99

    CAS  Google Scholar 

  52. Kalinichev AG, Churakov SV (1999) Size and topology of molecular clusters in supercritical water: a molecular dynamics simulation. Chem Phys Letters 302:411–417

    CAS  Google Scholar 

  53. Karagoez S, Bhaskar T et al (2005) Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84(7–8):875–884

    CAS  Google Scholar 

  54. Karagoz S, Bhaskar T et al (2006) Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on product distrubution. Bioresour Technol 97:90–98

    Google Scholar 

  55. Kneževic´ D, Swaai WPMV et al (2009) Hydrothermal conversion of biomass: I, glucose conversion in hot compressed water. Ind Eng Chem Res 48:4731–4743

    Google Scholar 

  56. Knill CJ, Kennedy JF (2005) Cellulosic biomass-derived products. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel and Dekker, New York, pp 937–956

    Google Scholar 

  57. Kobayashi N, Okada N et al (2009) Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass. Ind Eng Chem Res 48:373–379

    CAS  Google Scholar 

  58. Kohlmann KL, Westgate PJ et al (1995) Enhanced enzyme activities on hydrated lignocellulosic substrates. In: Penner M, Saddler J (eds) American Chemical Society national meeting, vol 207, ACS symposium series No. 618. American Chemical Society, Washington, DC, pp 237–255

    Google Scholar 

  59. Kritzer P, Dinjus E (2001) An assessment of supercritical water oxidation (SCWO): existing problems, possible solutions and new reactor concepts. Chem Eng J 83:207–214

    CAS  Google Scholar 

  60. Kruse A (2009) Hydrothermal biomass gasification. J Supercrit Fluids 47(3):391–399

    CAS  Google Scholar 

  61. Kruse A, Gawlik A (2003) Biomass conversion in water at 330-410 C and 30-50 MPa: identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42:267–269

    CAS  Google Scholar 

  62. Kumar S (2010) Hydrothermal treatment for biofuels: lignocellulosic biomass to bioethanol, biocrude, and biochar. Ph.D. Dissertation, Department of Chemical Engineering. Auburn University, Auburn, p 258

    Google Scholar 

  63. Kumar S, Gupta R et al (2009) Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresour Technol 101(2010):1337–1347

    Google Scholar 

  64. Kumar S, Gupta RB (2008) Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Ind Eng Chem Res 47(23):9321–9329

    CAS  Google Scholar 

  65. Kumar S, Gupta RB (2009) Biocrude production from switchgrass using subcritical water. Energy Fuel 23(10):5151–5159

    CAS  Google Scholar 

  66. Kumar S, Kothari U et al (2011) Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass Bioenergy 35(2):956–968

    CAS  Google Scholar 

  67. Laxman RS, Lachke AH (2008) Bioethanol from lignocellulosic biomass, part 1: pretreatment of the substrates. In: Pandey A (ed) Handbook of plant-based biofuels. CRC Press, Boca Raton, pp 121–139

    Google Scholar 

  68. Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from corn stover. Ind Eng Chem Res 42:5409–5416

    CAS  Google Scholar 

  69. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Ann Rev Energy Environ 21:403–465

    Google Scholar 

  70. Marchessault RH, Sarko A (1967) X-ray structure of polysaccharides. Adv Carbohydr Chem 22:421–482

    CAS  Google Scholar 

  71. Marcus Y (1999) On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding. Fluid Phase Equilib 164:131–142

    CAS  Google Scholar 

  72. Marta S, Antonio BF (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Google Scholar 

  73. Masaru W, Takafumi S et al (2004) Chemical reactions of C1 compounds in near-critical and supercritical water. Chem Rev 104:5803–5821

    Google Scholar 

  74. Matsumara Y, Minowa T et al (2005) Review—biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29:269–2925

    Google Scholar 

  75. Matsumura Y, Minowa T et al (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29(4):269–292

    CAS  Google Scholar 

  76. Matsumura Y, Sasaki M et al (2006) Supercritical water treatment of biomass for energy and material recovery. Combust Sci Tech 178:509–536

    CAS  Google Scholar 

  77. Meister JJ (1996) Chemical modification of lignin. In: Hon DN-S (ed) Chemical modification of lignocellulosic materials. Marcel Dekker Inc., New York, pp 129–157

    Google Scholar 

  78. Mendes RL (2007) Supercritical Fluid Extraction of Active Compounds from Algae. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 189–213

    Google Scholar 

  79. Miyoshia H, Chena D et al (2004) A novel process utilizing subcritical water to recycle soda–lime–silicate glass. J Non-Cryst Solids 337(3):280–282

    Google Scholar 

  80. Mok WS, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    CAS  Google Scholar 

  81. Mok WSL, Antal MJ, Varhegyi G (1992) Productive and parasitic pathways in dilute-acid-catalyzed hydrolysis of cellulose. Ind Eng Chem Res 31:94–100

    CAS  Google Scholar 

  82. Mosier N, Hendrickson R et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    CAS  Google Scholar 

  83. Mosier N, Wyman C et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    CAS  Google Scholar 

  84. Muthukumaraa P, Gupta RB (2000) Sodium-carbonate assisted supercritical water oxidation of chlorinated waste. Ind Eng Chem Res 39:4555–4563

    Google Scholar 

  85. Ni M, Leung DYC et al (2006) An overview of hydrogen production from biomass. Fuel Process Tech 87:461–472

    CAS  Google Scholar 

  86. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Google Scholar 

  87. Olsson L, Jorgensen H et al (2005) Bioethanol production from lignocellulosic material. In: Dumitriu S (ed) Polysachharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 957–993

    Google Scholar 

  88. Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc London A321:523–536

    Google Scholar 

  89. Pastircakova K (2004) Determination of trace metal concentrations in ashes from various biomass materials. Energy Educ Sci Technol 13:97–104

    CAS  Google Scholar 

  90. Pérez J, Muñoz-Dorado J et al (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Google Scholar 

  91. Pérez JA, Ballesteros I et al (2008) Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Google Scholar 

  92. Perlack RD, Wright LL et al (2005) Biomass as a feedstock for a bioenergy and bioproducts industry:the technical feasibility of a billion-ton annual supply. A joint report sponsored by US Department of Energy and US Department of Agriculture, p 78

    Google Scholar 

  93. Petchpradab P, Yoshida T et al (2009) Hydrothermal pretreatment of rubber wood for the saccharification process. Ind Eng Chem Res 48(9):4587–4591

    CAS  Google Scholar 

  94. Peterson AA, Vogel F et al (2008) Thermochemical biofuel production in hydrothermal media:a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    CAS  Google Scholar 

  95. Phillip E (1999) Organic chemical reactions in supercritical water. Chem Rev 99:603–621

    Google Scholar 

  96. Rogalinski T, Ingram T et al (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47(1):54–63

    CAS  Google Scholar 

  97. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    CAS  Google Scholar 

  98. Sarko A (1978) What is the crystalline structure of cellulose ? Tappi 61:59–61

    CAS  Google Scholar 

  99. Sarko A (1987) Cellulose—how much do we know about its structure? In: Kennedy JF (ed) Wood and cellulosics: industrial utilization, biotechnology, structure and properties. Ellis Horwood, Chichester, pp 55–70

    Google Scholar 

  100. Sasaki M, Fang Z et al (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890

    CAS  Google Scholar 

  101. Sasaki M, Goto K et al (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4:285–287

    Google Scholar 

  102. Sasaki M, Kabyemela B et al (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 1998(13):261–268

    Google Scholar 

  103. Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99:603–621

    CAS  Google Scholar 

  104. Savage PE, Gopalan S et al (1995) Reactions at supercritical conditions—applications and fundamentals. AIChE J 41(7):1723–1778

    CAS  Google Scholar 

  105. Savovaa D, Apakb E et al (2001) Biomass conversion to carbon adsorbents and gas. Biomass Bioenergy 21(2):133–142

    Google Scholar 

  106. Schenk PM, Thomas-Hall SR et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Google Scholar 

  107. Schwald W, Bobleter O (1989) Hydrothermolysis of cellulose under static and dynamic conditions at high temperatures. J Carbohydr Chem 8(4):565–578

    CAS  Google Scholar 

  108. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program-Biodiesel from algae. U.S. Department of Energy’s Office of Fuels Development

    Google Scholar 

  109. Sierra R, Smith A et al (2008) Producing fuels and chemicals from lignocellulosic biomass, vol 104, Chemical engineering progress. AIChE Publication, New York, pp S10–S18

    Google Scholar 

  110. Sinag A, Kruse A et al (2003) Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res 42:3516–3521

    CAS  Google Scholar 

  111. Sinnott ML (2007) Chapter 4: primary structure and conformation of oligosaccharides and polysaccharides. RSC publishing, Cambridge

    Google Scholar 

  112. Sjostrom E (1981) Wood chemistry: fundamentals and applications. Academic, New York

    Google Scholar 

  113. Spath PL, Dayton DC (2003) Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. Fischer-Tropsch synthesis. National Renewable Energy Laboratory, Golden, pp 90–107

    Google Scholar 

  114. Sukumaran RK (2009) Bioethanol from lignocellulosic biomass: part II production of cellulases and hemicellulases. In: Pandey A (ed) Hand book of plant based biofuels. CRC Press, BocaRaton, pp 141–157

    Google Scholar 

  115. Sun Y, Cheng JJ (2002) Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  Google Scholar 

  116. Suryawati L, Wilkins MR et al (2008) Simultaneous sacchrification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol Bioeng 101(5):894–902

    CAS  Google Scholar 

  117. Taherzadeh MJ, Karimi K (2007) Enzyme based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738

    CAS  Google Scholar 

  118. Tester JW, Holgate HR et al (1993) Supercritical water oxidation technology—process development and fundamental research. In: Tedder DW, Pohland FG (eds) Emerging technologies in hazardous waste management III. American Chemical Society, Washington, DC

    Google Scholar 

  119. Titirici M-M, Antonietti M et al (2008) Hydrothermal carbon from biomass: a comparision of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212

    CAS  Google Scholar 

  120. Titirici M-M, Thomas A et al (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem. New J Chem 31:787–789

    CAS  Google Scholar 

  121. Valenzuela MB, Jones CW et al (2006) Batch aqueous reforming of woody biomass. Energy Fuel 20:1744–1752

    CAS  Google Scholar 

  122. Varhegyi G, Szabo P et al (1998) TG, TG-MS, and FTIR characterization of high-yield biomass charcoals. Energy Fuel 12:969–974

    CAS  Google Scholar 

  123. Venderbosch R, Ardiyanti A et al (2010) Stabilization of biomass-derived pyrolysis oils. J Chem Technol Biotechnol 85(5):674–686

    CAS  Google Scholar 

  124. Vergara-Fernandez A, Vargas G et al (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32(4):338–344

    CAS  Google Scholar 

  125. Watanabe M, Aizawa Y et al (2005) Glucose reactions within the heating period and the effect of heating rate on the reactions in hot compressed water. Carbohydr Res 340:1931–1939

    CAS  Google Scholar 

  126. Watanabe M, Inomata H et al (2002) Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenergy 22:405–410

    CAS  Google Scholar 

  127. Weil JR, Brewer M et al (1997) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    CAS  Google Scholar 

  128. Wellig B (2003) Transpiring wall reactor for supercritical water oxidation. Swiss Federal Institute of Technology, Zurich, Doctor of Technical Sciences, p 291

    Google Scholar 

  129. Wijffels RH, Barbosa J (2010) An outlook on microalgal biofuels. Science 329:796–799

    CAS  Google Scholar 

  130. Wyman CE, Dale BE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    CAS  Google Scholar 

  131. Xu L, Brilman DWF et al (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102(8):5113–5122

    CAS  Google Scholar 

  132. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stiver cellulose. Biotechnol Bioeng 86(1):88–95

    CAS  Google Scholar 

  133. Yanqun Li MH, Nan Wu, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    Google Scholar 

  134. Zhang B, Huang H-J et al (2008) Reaction kinetics of the hydrothermal treatment of lignin. Appl Biochem Biotechnol 147:119–131

    CAS  Google Scholar 

  135. Zhang Y-HP, Berson E et al (2009) Sessions 3 and 8: pretreatment and biomass recalcitrance: fundamentals and progress. Appl Biochem Biotechnol 153:80–83

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, S. (2013). Sub- and Supercritical Water Technology for Biofuels. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_11

Download citation

Publish with us

Policies and ethics