
Chapter 10

Models for Endemic Diseases

10.1 A Model for Diseases with No Immunity

We have been studying SIR models, in which the transitions are from susceptible to
infective to removed, with the removal coming through recovery with full immunity
(as in measles) or through death from the disease (as in plague, rabies, and many
other animal diseases). Another type of model is an SIS model in which infectives
return to the susceptible class on recovery because the disease confers no immu-
nity against reinfection. Such models are appropriate for most diseases transmitted
by bacterial or helminth agents , and most sexually transmitted diseases (including
gonorrhea, but not such diseases as AIDS, from which there is no recovery). One
important way in which SIS models differ from SIR models is that in the former
there is a continuing flow of new susceptibles, namely recovered infectives. Later in
this chapter we will study models that include demographic effects, namely births
and deaths, another way in which a continuing flow of new susceptibles may arise.

The simplest SIS model, due to Kermack and McKendrick (1932), is

S′ = −βSI + γI, (10.1)
I′ = βSI − γI.

This differs from the SIR model only in that the recovered members return to the
class S at a rate γI instead of passing to the class R. The total population S+ I is a
constant, since (S+ I)′ = 0. We call this constant N; sometimes population size is
measured using K as the unit, so that the total population size is one. We may reduce
the model to a single differential equation by replacing S by N − I to give the single
differential equation

I′ = β I(N − I)− γI = (βN − γ)I −β I2 = (βN − γ)I

(
1− I

N − γ
β

)
. (10.2)

Since (10.2) is a logistic differential equation of the form
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I′ = rI
(

1− I
K

)
,

with r = βN−γ and with K =N−γ/β , our qualitative result tells us that if βN−γ <
0 or βN/γ < 1, then all solutions of the model (10.2) with nonnegative initial values
except the constant solution I = K −β/γ approach the limit zero as t → ∞, while
if βK/γ > 1, then all solutions with nonnegative initial values except the constant
solution I = 0 approach the limit K−γ/β > 0 as t →∞. Thus there is always a single
limiting value for I, but the value of the quantity βK/γ determines which limiting
value is approached, regardless of the initial state of the disease. In epidemiological
terms this says that if the quantity βK/γ is less than one, the infection dies out in the
sense that the number of infectives approaches zero. For this reason the equilibrium
I = 0, which corresponds to S = K, is called the disease-free equilibrium. On the
other hand, if the quantity βK/γ exceeds one, the infection persists. The equilibrium
I = K − γ/β , which corresponds to S = γ/β , is called an endemic equilibrium.

As we have seen in epidemic models, the dimensionless quantity βK/γ is called
the basic reproduction number or contact number for the disease, and it is usually
denoted by R0. In studying an infectious disease, the determination of the basic
reproduction number is invariably a vital first step. The value one for the basic re-
production number defines a threshold at which the course of the infection changes
between disappearance and persistence. Since βK is the number of contacts made
by an average infective per unit time and 1/γ is the mean infective period, R0 rep-
resents the average number of secondary infections caused by each infective over
the course of the infection. Thus, it is intuitively clear that if R0 < 1, the infec-
tion should die out, while if R0 > 1, the infection should establish itself. In more
highly structured models than the simple one we have developed here, the calcu-
lation of the basic reproduction number may be much more complicated, but the
essential concept remains, that of the basic reproduction number as the number of
secondary infections caused by an average infective over the course of the disease.
However, there is a difference from the behavior of epidemic models. Here, the ba-
sic reproduction number determines whether the infection establishes itself or dies
out, whereas in the SIR epidemic model the basic reproduction number determines
whether there will be an epidemic.

We were able to reduce the system of two differential equations (10.1) to the
single equation (10.2) because of the assumption that the total population S+ I is
constant. If there are deaths due to the disease, this assumption is violated, and it
would be necessary to use a two-dimensional system as a model. We shall consider
this in a more general context in the next section.

A model for a disease from which infectives recover with no immunity against
reinfection and that includes births and deaths is

S′ = Λ(N)−β (N)SI −μS+ f αI, (10.3)
I′ = β (N)SI −αI −μI,
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describing a population with a density-dependent birth rate Λ(N) per unit time, a
proportional death rate μ in each class, and a rate α of departure from the infective
class through recovery or disease death and with a fraction f of infectives recovering
with no immunity against reinfection. In this model, if f < 1, the total population
size is not constant, and K represents a carrying capacity, or maximum possible
population size, rather than a constant population size.

It is easy to verify that

R0 =
Kβ (K)

μ +α
.

If we add the two equations of (10.11) and use N = S+ I, we obtain

N′ = Λ(N)−μN − (1− f )αI.

We will carry out the analysis of the SIS model only in the special case f = 1, so
that N is the constant K. The system (10.11) is asymptotically autonomous and its
asymptotic behavior is the same as that of the single differential equation

I′ = β (K)I(K − I)− (α +μ)I , (10.4)

where S has been replaced by K − I. But (10.4) is a logistic equation that is eas-
ily solved analytically by separation of variables or qualitatively by an equilibrium
analysis. We find that I → 0 if Kβ (K)< (μ +α), or R0 < 1 and I → I∞ > 0 with

I∞ = K − μ +α
β (K)

= K
(

1− 1
R0

)
if Kβ (K)> (μ +α) or R0 > 1.

The endemic equilibrium, which exists if R0 > 1, is always asymptotically sta-
ble. If R0 < 1, the system has only the disease-free equilibrium and this equilibrium
is asymptotically stable. The verification of these properties remains valid if there
are no births and deaths. This suggests that a requirement for the existence of an
endemic equilibrium is a flow of new susceptibles either through recovery without
immunity against reinfection or through births.

Exercises

1. Modify the SIS model (10.1) to the situation in which there are two competing
strains of the same disease, generating two infective classes I1, I2 under the as-
sumption that coinfections are not possible. Does the model predict coexistence
of the two strains or competitive exclusion?

2.∗ A communicable disease from which infectives do not recover may be modeled
by the pair of differential equations

S′ =−βSI, I′ = βSI.
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Show that in a population of fixed size K such a disease will eventually spread
to the entire population.

3.∗ Consider a disease spread by carriers who transmit the disease without exhibit-
ing symptoms themselves. Let C(t) be the number of carriers and suppose that
carriers are identified and isolated from contact with others at a constant per
capita rate α , so that C′ =−αC. The rate at which susceptibles become infected
is proportional to the number of carriers and to the number of susceptibles, so
that S′ = −βSC. Let C0 and S0 be the numbers of carriers and susceptibles,
respectively, at time t = 0.

(i) Determine the number of carriers at time t from the first equation.
(ii) Substitute the solution to part (i) into the second equation and determine

the number of susceptibles at time t.
(iii) Find limt→∞ S(t), the number of members of the population who escape

the disease.

4.∗ Consider a population of fixed size K in which a rumor is being spread by word
of mouth. Let y(t) be the number of people who have heard the rumor at time
t and assume that everyone who has heard the rumor passes it on to r others in
unit time. Thus, from time t to time (t+h). the rumor is passed on hry(t) times,
but a fraction y(t)/K of the people who hear it have already heard it, and thus
there are only hry(t)

(
K−y(t)

K

)
people who hear the rumor for the first time. Use

these assumptions to obtain an expression for y(t +h)− y(t), divide by h, and
take the limit as h → 0 to obtain a differential equation satisfied by y(t).

5. At 9 AM one person in a village of 100 inhabitants starts a rumor. Suppose that
everyone who hears the rumor tells one other person per hour. Using the model
of the previous exercise, determine how long it will take until half the village
has heard the rumor.

6.∗ If a fraction λ of the population susceptible to a disease that provides immunity
against reinfection moves out of the region of an epidemic, the situation may
be modeled by a system

S′ =−βSI −λS, I′ = βSI −αI.

Show that both S and I approach zero as t → ∞.

10.2 The SIR Model with Births and Deaths

Epidemics that sweep through a population attract much attention and arouse a great
deal of concern. We have omitted births and deaths in our description of epidemic
models because the time scale of an epidemic is generally much shorter than the
demographic time scale. In effect, we have used a time scale on which the number
of births and deaths in unit time is negligible.
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However, there are diseases that are endemic in many parts of the world and that
cause millions of deaths each year. To model a disease that may be endemic we need
to think on a longer time scale and include births and deaths. A reference describing
the properties of many endemic diseases is Anderson and May (1991). For diseases
that are endemic in some region, public health physicians would like to be able to
estimate the number of infectives at a given time as well as the rate at which new
infections arise. The effects of quarantine or vaccination in reducing the number
of victims are of importance, just as in the treatment of epidemics. In addition, the
possibility of defeating the endemic nature of the disease and thus controlling or
even eradicating the disease in a population is worthy of study.

A model of Kermack and McKendrick (1932) includes births in the susceptible
class proportional to total population size and a death rate in each class proportional
to the number of members in the class. This model allows the total population size
to grow exponentially or die out exponentially if the birth and death rates are un-
equal. It is applicable to such questions as whether a disease will control the size
of a population that would otherwise grow exponentially. We shall return to this
topic, which is important in the study of many diseases in less-developed countries
with high birth rates. To formulate a model in which total population size remains
bounded we could follow the approach suggested by Hethcote (1976) in which the
total population size K is held constant by making birth and death rates equal. Such
a model is

S′ = −βSI +μ(K −S),

I′ = βSI − γI −μI,

R′ = γI −μR .

Because S+ I +R = K, we can view R as determined when S and I are known and
consider the two-dimensional system

S′ = −βSI +μ(K −S),

I′ = βSI − γI −μI .

We shall examine a slightly more general SIR model with births and deaths for
a disease that may be fatal to some infectives. For such a disease, the class R of
removed members should contain only recovered members, not members removed
by death from the disease. It is not possible to assume that the total population size
remains constant if there are deaths due to disease; a plausible model for a disease
that may be fatal to some infectives must allow the total population to vary in time.
The simplest assumption to allow this is a constant birth rate Λ , but in fact the
analysis is quite similar if the birth rate is a function Λ(N) of total population size
N.

Let us analyze the model
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S′ = Λ −βSI −μS,

I′ = βSI −μI −αI, (10.5)
N′ = Λ − (1− f )αI −μN ,

where N = S+ I +R, with a mass action contact rate, a constant number of births
Λ per unit time, a proportional natural death rate μ in each class, and a rate of
recovery or disease death α of infectives with a fraction f of infectives recovering
with immunity against reinfection. In this model, if f = 1 the total population size
approaches a limit K = Λ/μ . Then K is the carrying capacity of the population. If
f < 1, the total population size is not constant, and K again represents a carrying
capacity or maximum possible population size, rather than a population size. We
view the first two equations as determining S and I, and then consider the third
equation as determining N once S and I are known. This is possible because N does
not enter into the first two equations. Instead of using N as the third variable in this
model we could have used R, and the same reduction would have been possible.

If the birth or recruitment rate Λ(N) is a function of total population size, then in
the absence of disease the total population size N satisfies the differential equation

N′ = Λ(N)−μN .

The carrying capacity is the limiting population size K, satisfying

Λ(K) = μK, Λ ′(K)< μ .

The condition Λ ′(K)< μ ensures the asymptotic stability of the equilibrium popu-
lation size K. It is reasonable to assume that K is the only positive equilibrium, so
that

Λ(N)> μN

for 0 ≤ N ≤ K. For most population models,

Λ(0) = 0, Λ ′′(N)≤ 0 .

However, if Λ(N) represents recruitment into a behavioral class, as would be natural
for models of sexually transmitted diseases, it would be plausible to have Λ(0)> 0,
or even to consider Λ(N) to be a constant function. If Λ(0) = 0, we require Λ ′(0)>
μ , because if this requirement is not satisfied, there is no positive equilibrium and
the population would die out even in the absence of disease.

We have used a mass action contact rate for simplicity, even though a more gen-
eral contact rate would give a more accurate model, just as in the epidemics consid-
ered in the preceding section. With a general contact rate and a density-dependent
birth rate we would have a model

S′ = Λ(N)−β (N)SI −μS,

I′ = β (N)SI −μI −αI, (10.6)
N′ = Λ(N)− (1− f )αI −μN.
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If f = 1, so that there are no disease deaths, the equation for N is

N′ = Λ(N)−μN ,

so that N(t) approaches a limiting population size K. The theory of asymptotically
autonomous systems [Castillo-Chavez and Thieme (1993), Markus (1956), Thieme
(1994), Thieme and Castillo-Chavez (1993)] implies that if N has a constant limit
then the system is equivalent to the system in which N is replaced by this limit. Then
the system (10.6) is the same as the system (10.5) with β replaced by the constant
β (K) and N by K, and Λ(N) replaced by the constant Λ(K) = μK.

We shall analyze the model (10.5) qualitatively. In view of the remark above,
our analysis will also apply to the more general model (10.6) if there are no disease
deaths. Analysis of the system (10.6) with f < 1 is much more difficult. We will
confine our study of (10.6) to a description without details.

The first stage of the analysis is to note that the model (10.5) is a properly posed
problem. That is, since S′ ≥ 0 if S = 0 and I′ ≥ 0 if I = 0, we have S ≥ 0, I ≥ 0
for t ≥ 0, and since N′ ≤ 0 if N = K, we have N ≤ K for t ≥ 0. Thus the solution
always remains in the biologically realistic region S ≥ 0, I ≥ 0, 0 ≤ N ≤ K if it starts
in this region. By rights, we should verify such conditions whenever we analyze a
mathematical model, but in practice this step is frequently overlooked.

Our approach will be to identify equilibria (constant solutions) and then to deter-
mine the asymptotic stability of each equilibrium. Asymptotic stability of an equi-
librium means that a solution starting sufficiently close to the equilibrium remains
close to the equilibrium and approaches the equilibrium as t → ∞, while instabil-
ity of the equilibrium means that there are solutions starting arbitrarily close to the
equilibrium that do not approach it. To find equilibria (S∞, I∞) we set the right side
of each of the two equations equal to zero. The second of the resulting algebraic
equations factors, giving two alternatives. The first alternative is I∞ = 0, which will
give a disease-free equilibrium, and the second alternative is βS∞ = μ +α , which
will give an endemic equilibrium, provided that βS∞ = μ +α < βK. If I∞ = 0 the
other equation gives S∞ = K = Λ/μ . For the endemic equilibrium the first equation
gives

I∞ =
Λ

μ +α
− μ

β
. (10.7)

We linearize about an equilibrium (S∞, I∞) by letting y = S−S∞, z = I − I∞, writing
the system in terms of the new variables y and z and retaining only the linear terms
in a Taylor expansion. We obtain a system of two linear differential equations,

y′ = −(β I∞ +μ)y−βS∞z,

z′ = β I∞y+(βS∞ −μ −α)z .

The coefficient matrix of this linear system is[−β I∞ −μ −βS∞
β I∞ βS∞ −μ −α

]
.
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We then look for solutions whose components are constant multiples of eλ t ; this
means that λ must be an eigenvalue of the coefficient matrix. The condition that all
solutions of the linearization at an equilibrium tend to zero as t → ∞ is that the real
part of every eigenvalue of this coefficient matrix be negative. At the disease-free
equilibrium the matrix is [−μ −βK

0 βK −μ −α

]
,

which has eigenvalues −μ and βK − μ −α . Thus, the disease-free equilibrium is
asymptotically stable if βK < μ +α and unstable if βK > μ +α . Note that this
condition for instability of the disease-free equilibrium is the same as the condition
for the existence of an endemic equilibrium.

In general, the condition that the eigenvalues of a 2× 2 matrix have negative
real part is that the determinant be positive and the trace (the sum of the diagonal
elements) be negative. Since βS∞ = μ +α at an endemic equilibrium, the matrix of
the linearization at an endemic equilibrium is[−β I∞ −μ −βS∞

β I∞ 0

]
, (10.8)

and this matrix has positive determinant and negative trace. Thus, the endemic equi-
librium, if there is one, is always asymptotically stable. If the quantity

R0 =
βK

μ +α
=

K
S∞

(10.9)

is less than one, the system has only the disease-free equilibrium, and this equilib-
rium is asymptotically stable. In fact, it is not difficult to prove that this asymptotic
stability is global, that is, that every solution approaches the disease-free equilib-
rium. If the quantity R0 is greater than one then the disease-free equilibrium is un-
stable, but there is an endemic equilibrium that is asymptotically stable. Again, the
quantity R0 is the basic reproduction number. It depends on the particular disease
(determining the parameter α) and on the rate of contacts, which may depend on
the population density in the community being studied. The disease model exhibits
a threshold behavior: If the basic reproduction number is less than one, the disease
will die out, but if the basic reproduction number is greater than one, the disease
will be endemic. Just as for the epidemic models of Chapter 1, the basic repro-
duction number is the number of secondary infections caused by a single infective
introduced into a wholly susceptible population, because the number of contacts per
infective in unit time is βK, and the mean infective period (corrected for natural
mortality) is 1/(μ +α).

There are two aspects of the analysis of the model (10.6) that are more com-
plicated than the analysis of (10.5). The first is in the study of equilibria. Because
of the dependence of Λ(N) and β (N) on N, it is necessary to use two of the equi-
librium conditions to solve for S and I in terms of N and then substitute into the
third condition to obtain an equation for N. Then by comparing the two sides of this
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equation for N = 0 and N = K it is possible to show that there must be an endemic
equilibrium value of N between 0 and K.

The second complication is in the stability analysis. Since (10.6) is a three-
dimensional system that cannot be reduced to a two-dimensional system, the coeffi-
cient matrix of its linearization at an equilibrium is a 3×3 matrix, and the resulting
characteristic equation is a cubic polynomial equation of the form

λ 3 +a1λ 2 +a2λ +a3 = 0 .

The Routh–Hurwitz conditions

a1 > 0, a1a2 > a3 > 0

are necessary and sufficient conditions for all roots of the characteristic equation to
have negative real part. A technically complicated calculation is needed to verify
that these conditions are satisfied at an endemic equilibrium for the model (10.6).

The asymptotic stability of the endemic equilibrium means that the compartment
sizes approach a steady state. If the equilibrium had been unstable, there would
have been a possibility of sustained oscillations. Oscillations in a disease model
mean fluctuations in the number of cases to be expected, and if the oscillations have
long period, that could also mean that experimental data for a short period would be
quite unreliable as a predictor of the future. Epidemiological models that incorporate
additional factors may exhibit oscillations. A variety of such situations is described
in [Hethcote and Levin (1989), Hethcote, Stech, and van den Driessche (1981)].

The epidemic models of the previous chapter also exhibited a threshold behavior
of a slightly different kind. For these models, which were SIR models without births
or natural deaths, the threshold distinguished between a dying out of the disease and
an epidemic, or short-term spread of disease.

From the third equation of (10.5) we obtain

N′ = Λ −μN − (1− f )αI ,

where N = S+ I +R. From this we see that at the endemic equilibrium, N = K −
(1− f )αI/μ , and the reduction in the population size from the carrying capacity K
is

(1− f )
α
μ

I∞ = (1− f )
[

αK
μ +α

− α
β

]
.

The parameter α in the SIR model may be considered as describing the pathogenic-
ity of the disease. If α is large, it is less likely that R0 > 1. If α is small, then the
total population size at the endemic equilibrium is close to the carrying capacity K
of the population. Thus, the maximum population decrease caused by disease will
be for diseases of intermediate pathogenicity.

Numerical simulations indicate that the approach to endemic equilibrium for an
SIR model is like a rapid and severe epidemic if the epidemiological and demo-
graphic time scales are very different. The same happens in the SIS model. If there
are few disease deaths, the number of infectives at endemic equilibrium may be
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substantial, and there may be damped oscillations of large amplitude about the en-
demic equilibrium. For both the SIR and SIS models we may write the differential
equation for I as

I′ = I[β (N)S− (μ +α)] = β (N)I[S−S∞] ,

which implies that whenever S exceeds its endemic equilibrium value S∞, I is in-
creasing, and epidemic-like behavior is possible. If R0 < 1 and S < K, it follows
that I′ < 0, and thus I is decreasing. Thus, if R0 < 1, I cannot increase and no
epidemic can occur.

Next, we will turn to some applications of SIR and SIS models.

10.3 Some Applications

10.3.1 Herd Immunity

In order to prevent a disease from becoming endemic it is necessary to reduce the
basic reproduction number R0 below one. This may sometimes be achieved by im-
munization. If a fraction p of the Λ newborn members per unit time of the popula-
tion is successfully immunized, the effect is to replace K by K(1− p), and thus to
reduce the basic reproduction number to R0(1− p). The requirement R0(1− p)< 1
gives 1− p < 1/R0, or

p > 1− 1
R0

.

A population is said to have herd immunity if a large enough fraction has been
immunized to ensure that the disease cannot become endemic. The only disease
for which this has actually been achieved worldwide is smallpox, for which R0 is
approximately 5, so that 80 percent immunization does provide herd immunity.

For measles, epidemiological data in the United States indicate that R0 for rural
populations ranges from 5.4 to 6.3, requiring vaccination of 81.5 percent to 84.1
percent of the population. In urban areas R0 ranges from 8.3 to 13.0, requiring
vaccination of 88.0 percent to 92.3 percent of the population. In Great Britain, R0
ranges from 12.5 to 16.3, requiring vaccination of 92 percent to 94 percent of the
population. The measles vaccine is not always effective, and vaccination campaigns
are never able to reach everyone. As a result, herd immunity against measles has not
been achieved (and probably never can be). Since smallpox is viewed as more seri-
ous and requires a lower percentage of the population be immunized, herd immunity
was attainable for smallpox. In fact, smallpox has been eliminated; the last known
case was in Somalia in 1977, and the virus is maintained now only in laboratories.
The eradication of smallpox was actually more difficult than expected, because high
vaccination rates were achieved in some countries but not everywhere, and the dis-
ease persisted in some countries. The eradication of smallpox was possible only
after an intensive campaign for worldwide vaccination [Hethcote (1978)].
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10.3.2 Age at Infection

In order to calculate the basic reproduction number R0 for a disease, we need to
know the values of the contact rate β and the parameters μ,K, and α . The param-
eters μ,K, and α can usually be measured experimentally, but the contact rate β is
difficult to determine directly. There is an indirect means of estimating R0 in terms
of the life expectancy and the mean age at infection that enables us to avoid having
to estimate the contact rate. In this calculation, we will assume that β is constant,
but we will also indicate the modifications needed when β is a function of total
population size N. The calculation assumes exponentially distributed life spans and
infective periods. In fact, the result is valid so long as the life span is exponentially
distributed, but if the life span is not exponentially distributed, the result could be
quite different.

Consider the “age cohort” of members of a population born at some time t0 and
let a be the age of members of this cohort. If y(a) represents the fraction of members
of the cohort who survive to age (at least) a, then the assumption that a fraction μ
of the population dies per unit time means that y′(a) =−μy(a). Since y(0) = 1, we
may solve this first order initial value problem to obtain y(a) = e−μa. The fraction
dying at (exactly) age a is −y′(a) = μy(a). The mean life span is the average age
at death, which is

∫ ∞
0 a[−y′(a)]da, and if we integrate by parts, we find that this life

expectancy is∫ ∞

0
[−ay′(a)]da = [−ay(a)]∞0 +

∫ ∞

0
y(a)da =

∫ ∞

0
y(a)da .

Since y(a) = e−μa, this reduces to 1/μ . The life expectancy is often denoted by L,
so that we may write

L =
1
μ

.

The rate at which surviving susceptible members of the population become in-
fected at age a and time t0 + a is β I(t0 + a). Thus, if z(a) is the fraction of the age
cohort alive and still susceptible at age a, z′(a) =−[μ +β I(t0+a)]z(a). Solution of
this linear first-order differential equation gives

z(a) = e−[μa+
∫ a

0 β I(t0+b)db] = y(a)e−
∫ a

0 β I(t0+b)db .

The mean length of time in the susceptible class for members who may become
infected, as opposed to dying while still susceptible, is∫ ∞

0
e−

∫ a
0 β I(t0+b)dbda ,

and this is the mean age at which members become infected. If the system is at
an equilibrium I∞, this integral may be evaluated, and the mean age at infection ,
denoted by A, is given by
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A =
∫ ∞

0
e−β I∞a da =

1
β I∞

.

For our model the endemic equilibrium is

I∞ =
μK

μ +α
− μ

β
,

and this implies
L
A
=

β I∞

μ
= R0 −1 . (10.10)

This relation is very useful in estimating basic reproduction numbers. For example,
in some urban communities in England and Wales between 1956 and 1969 the av-
erage age of contracting measles was 4.8 years. If life expectancy is assumed to be
70 years, this indicates R0 = 15.6.

The derivation of A = 1/β I∞ is obtained from considering surviving susceptible
members at each age. This is the value that would be obtained from data giving the
fraction of susceptibles at each age. However, if average age at infection has the nor-
mal meaning of average age at which those people who become infected do become
infected, then the calculation would be different. The susceptible population at age
a is a fraction e−(μ+β I∞) of the number of newborn members, and the incidence
of new infections is β I∞e−(μ+β I∞). This would lead to an average age at infection
A∗ = 1/(μ +β I∞) and the relation L/A∗= R0.

If β is a function β (N) of total population size, the relation (10.10) becomes

R0 =
β (K)

β (N)

[
1+

L
A

]
.

If disease mortality does not have a large effect on total population size, in particular
if there is no disease mortality, this relation is very close to (10.10).

The relation between age at infection and basic reproduction number indicates
that measures such as inoculations, which reduce R0, will increase the average age
at infection. For diseases such as rubella (German measles), whose effects may be
much more serious in adults than in children, this indicates a danger that must be
taken into account: While inoculation of children will decrease the number of cases
of illness, it will tend to increase the danger to those who are not inoculated or for
whom the inoculation is not successful. Nevertheless, the number of infections in
older people will be reduced, although the fraction of cases that are in older people
will increase.

10.3.3 The Interepidemic Period

Many common childhood diseases, such as measles, whooping cough, chicken pox,
diphtheria, and rubella, exhibit variations from year to year in the number of cases.
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These fluctuations are frequently regular oscillations, suggesting that the solutions
of a model might be periodic. This does not agree with the predictions of the model
we have been using in this section; however, it would not be inconsistent with solu-
tions of the characteristic equation, which are complex conjugate with small nega-
tive real part corresponding to lightly damped oscillations approaching the endemic
equilibrium. Such behavior would look like recurring epidemics. If the eigenval-
ues of the matrix of the linearization at an endemic equilibrium are −u± iv, where
i2 = −1, then the solutions of the linearization are of the form Be−ut cos(vt + c),
with decreasing “amplitude” Be−ut and “period” 2π

v .
For the model (10.5) we recall from (10.7) that at the endemic equilibrium we

have
β I∞ +μ = μR0, βS∞ = μ + γ +α,

and from (10.8), the matrix of the linearization is[ −μR0 −(μ + γ +α)
μ(R0 −1) 0

]
.

The eigenvalues are the roots of the quadratic equation

λ 2 +μR0λ +μ(R0 −1)(μ + γ +α) = 0,

which are

λ =
−μR0 ±

√
μ2R0

2 −4μ(R0 −1)(μ + γ +α)

2
.

If the mean infective period 1/(γ + α) is much shorter than the mean life span
1/μ , we may neglect the terms that are quadratic in μ . Thus, the eigenvalues are
approximately

−μR0 ±
√−4μ(R0 −1)(γ +α)

2
,

and these are complex with imaginary part
√

μ(R0 −1)(γ +α). This indicates os-
cillations with period approximately

2π√
μ(R0 −1)(γ +α)

.

We use the relation μ(R0−1) = μL/A and the mean infective period τ = 1/(γ +α)
to see that the interepidemic period T is approximately 2π

√
Aτ . Thus, for exam-

ple, for recurring outbreaks of measles with an infective period of 2 weeks or 1/26
year, in a population with a life expectancy of 70 years with R0 estimated as 15, we
would expect outbreaks spaced 2.76 years apart. Also, since the “amplitude” at time
t is e−μR0t/2, the maximum displacement from equilibrium is multiplied by a fac-
tor e−(15)(2.76)/140 = 0.744 over each cycle. In fact, many observations of measles
outbreaks indicate less damping of the oscillations, suggesting that there may be
additional influences that are not included in our simple model. To explain oscil-
lations about the endemic equilibrium, a more complicated model is needed. One
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possible generalization would be to assume seasonal variations in the contact rate.
This is a reasonable supposition for a childhood disease most commonly transmit-
ted through school contacts, especially in winter in cold climates. Note, however,
that data from observations are never as smooth as model predictions and models
are inevitably gross simplifications of reality that cannot account for random vari-
ations in the variables. It may be difficult to judge from experimental data whether
an oscillation is damped or persistent.

10.3.4 “Epidemic” Approach to Endemic Equilibrium

In the model (10.5), the demographic time scale described by the birth and natural
death rates μK and μ and the epidemiological time scale described by the rate (α +
γ) of departure from the infective class may differ substantially. Think, for example,
of a natural death rate μ = 1/75, corresponding to a human life expectancy of 75
years, and epidemiological parameters α = 0 and γ = 25, describing a disease from
which all infectives recover after a mean infective period of 1/25 year, or two weeks.
Suppose we consider a carrying capacity K = 1000 and take β = 0.1, indicating that
an average infective makes (0.1)(1000) = 100 contacts per year. Then R0 = 4.00,
and at the endemic equilibrium we have S∞ = 250.13, I∞ = 0.40, R∞ = 749.47. This
equilibrium is globally asymptotically stable and is approached from every initial
state.

However, if we take S(0) = 999, I(0) = 1, R(0) = 0, simulating the introduction
of a single infective into a susceptible population, and solve the system numerically,
we find that the number of infectives rises sharply to a maximum of 400 and then
decreases to almost zero in a period of 0.4 year, or about 5 months. In this time
interval the susceptible population decreases to 22 and then begins to increase, while
the removed (recovered and immune against reinfection) population increases to
almost 1000 and then begins a gradual decrease. The size of this initial “epidemic”
could not have been predicted from our qualitative analysis of the system (10.5). On
the other hand, since μ is small compared to the other parameters of the model, we
might consider neglecting μ , replacing it by zero in the model. If we do this, the
model reduces to the simple Kermack–McKendrick epidemic model (without births
and deaths) of Section 9.2.

If we follow the model (10.5) over a longer time interval, we find that the sus-
ceptible population grows to 450 after 46 years, then drops to 120 during a small
epidemic with a maximum of 18 infectives, and exhibits widely spaced epidemics
decreasing in size. It takes a very long time before the system comes close to the
endemic equilibrium and remains close to it. The large initial epidemic conforms
to what has often been observed in practice when an infection is introduced into a
population with no immunity, such as the smallpox inflicted on the Aztecs by the
invasion of Cortez.
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If we use the model (10.5) with the same values of β , K, and μ , but take α = 25,
γ = 0 to describe a disease fatal to all infectives, we obtain very similar results. Now
the total population is S+ I, which decreases from an initial size of 1000 to a min-
imum of 22 and then gradually increases and eventually approaches its equilibrium
size of 250.53. Thus, the disease reduces the total population size to one-fourth of
its original value, suggesting that infectious diseases may have large effects on pop-
ulation size. This is true even for populations that would grow rapidly in the absence
of infection, as we shall see in the next section.

10.3.5 The SIS Model with Births and Deaths

In order to describe a model for a disease from which infectives recover with immu-
nity against reinfection and that includes births and deaths as in the model (10.5),
we may modify the model (10.5) by removing the equation for R′ and moving the
term αI describing the rate of recovery from infection to the equation for S′. This
gives the model

S′ = −βSI +μ(K −S)+αI, (10.11)
I′ = βSI −αI −μI − γI,

describing a population with a constant number of births μK per unit time, a pro-
portional death rate μ in each class, and a fraction γ of infectives dying from infec-
tion and a fraction α of infectives recovering with no immunity against reinfection.
In this model, if γ > 0, the total population size is not constant and K represents
a carrying capacity, or maximum possible population size, rather than a constant
population size. The analysis of the model (10.11) is very similar to that of the SIR
model (10.5), except that there is no equation for R′ to be eliminated.

The only difference is the additional term αI in the equation for S′, and this
does not change any of the qualitative results. As in the SIR model we have a basic
reproductive number

R0 =
βK

μ + γ +α
=

K
S∞

,

and if R0 < 1, the disease-free equilibrium S = K, I = 0 is asymptotically stable,
while if R0 > 1, there is an endemic equilibrium (S∞, I∞) with βS∞ = μ + γ +α
and I∞ given by (10.7), which is asymptotically stable. There are, however, differ-
ences that are not disclosed by the qualitative analysis. If the epidemiological and
demographic time scales are very different, for the SIR model we observed that the
approach to endemic equilibrium is like a rapid and severe epidemic. The same hap-
pens in the SIS model, especially if there is a significant number of deaths due to
disease. If there are few disease deaths, the number of infectives at endemic equi-
librium may be substantial, and there may be oscillations of large amplitude about
the endemic equilibrium.

For both the SIR and SIS models we may write the differential equation for I as
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I′ = I
[
βS− (μ +α + γ)

]
= β I[S−S∞],

which implies that whenever S exceeds its endemic equilibrium value, I is increas-
ing, and epidemic-like behavior is possible. If R0 < 1 and S < K, it follows that
I′ < 0, and thus I is decreasing. Thus, if R0 < 1 I cannot increase and no epidemic
can occur.

Exercise

1. Recurrent outbreaks of measles and other childhood diseases have previously
been explained by an interaction between intrinsic epidemiological forces gen-
erating dampened oscillations and seasonal and/or stochastic excitation. The
following model shows that isolation or quarantine (i.e., sick individuals stay
at home and have a reduced infective impact) can create self-sustained oscilla-
tions.
In the model considered here the population is divided into susceptibles (S), in-
fectives (I), isolated or quarantined individuals (Q), and recovered individuals
(R), for whom permanent immunity is assumed. Let N denote the total popu-
lation, and let A = S+ I +R denote the active (nonisolated) individuals. The
model takes the form

dS
dt

= μN −μS−σS
I
A
,

dI
dt

=−(μ + γ)I +σS
I
A
,

dQ
dt

=−(μ +ξ )Q+ γI,

dR
dt

=−μR+ξ Q,

A = S+ I +R.

(10.12)

All newborns are assumed to be susceptible. μ is the per capita mortality rate,
σ is the per capita infection rate of an average susceptible individual provided
everybody else is infected, γ is the rate at which individuals leave the infective
class, and ξ is the rate at which individuals leave the isolated class; all are
positive constants.

(i) Show that the total population size N is constant.
(ii) Give the meanings of 1/μ , 1/γ , 1/ξ and their units.

(iii) Rescale the model by: τ = σt,u = S/A,y = I/A,q = Q/A,z = R/A. Rear-
range your new model as follows:

ẏ = y(1−ν −θ − y− z+θy− (ν +ζ )q)
q̇ = (1+q)(θy− (ν +ζ )q)
ż = ζ q−νz+ z(θy− (ν +ζ )q).

(10.13)
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Express the new parameters in terms of the old parameters. Check that all
the new parameters and variables are dimensionless.

(iv) Study the stability of the equilibrium point (0,0,0) and derive a basic re-
productive number R0.

(v) Use a computer algebra system to demonstrate that (10.13) has periodic
trajectories. Use the parameter values ν = 0.0002, θ = 0.0156, and ξ close
to θ 2(1−θ). You also need to choose proper initial values.

10.4 Temporary Immunity

In the SIR models that we have studied, it has been assumed that the immunity
received by recovery from the disease is permanent. This is not always true, since
there may be a gradual loss of immunity with time. In addition, there are often
mutations in a virus, and as a result the active disease strain is sufficiently different
from the strain from which an individual has recovered, that the immunity received
may wane.

Temporary immunity may be described by an SIRS model in which a rate of
transfer from R to S is added to an SIR model. For simplicity, we confine our at-
tention to epidemic models, without including births, natural deaths, and disease
deaths, but the analysis of models including births and deaths would lead to the
same conclusions. Thus we begin with a model

S′ = −βSI +θR,

I′ = βSI −αI,

R′ = αI −θR,

with a proportional rate θ of loss of immunity.
Since N′ = (S+ I +R)′ = 0, the total population size N is constant, and we may

replace R by N −S− I and reduce the model to a two-dimensional system

S′ = −βSI +θ(N −S− I),

I′ = βSI −αI. (10.14)

Equilibria are solutions of the system

βSI +θS+θ I = θN,

αI +θS+θ I = θN,

and there is a disease-free equilibrium S = α/β , I = 0. If R0 = βN/α > 1, there is
also an endemic equilibrium with

βS = α, (α +θ)I = θ(N −S).



428 10 Models for Endemic Diseases

The matrix of the linearization of (10.14) at an equilibrium (S, I) is

A =

[−(β I +θ) −(βS+θ)
β I βS−α

]
.

At the disease-free equilibrium, A has the sign structure[− −
+ βN −α

]
.

This matrix has negative trace and positive determinant if and only if βN < α , or
R0 < 1. At an endemic equilibrium, the matrix has sign structure[− −

+ 0

]
.

and thus always has negative trace and positive determinant. We see from this that
as in other models studied in this chapter, the disease-free equilibrium is asymp-
totically stable if and only if the basic reproducton number is less than 1 and the
endemic equilibrium, which exists if and only if the basic reproduction number ex-
ceeds 1, is always asymptotically stable. However, it is possible for a different SIRS
model to have quite different behavior.

We consider an SIRS model, that assumes a constant period of temporary immu-
nity following recovery from the infection in place of an exponentially distributed
period of temporary immunity. It will turn out that the endemic equilibrium for this
model may be unstable, thus giving an example of a generalization that leads to new
possibilities for the behavior of a model.

We add the assumption that there is a temporary immunity period of fixed length
ω , after which recovered infectives revert to the susceptible class. The resulting
model is described by the system

S′(t) = −βS(t)I(t)+αI(t −ω),

I′(t) = βS(t)I(t)−αI(t),

R′(t) = αI(t)−αI(t −ω).

Since N = S+ I +R is constant, we may discard the equation for R and use a
two-dimensional model

S′(t) = −βS(t)I(t)+αI(t −ω), (10.15)
I′(t) = βS(t)I(t)−αI(t).

Equilibria are given by I = 0 or βS = α . There is a disease-free equilibrium S = N,
I = 0. There is also an endemic equilibrium for which βS = α . However, the two
equations for S and I give only a single equilibrium condition. To determine the
endemic equilibrium (S∞, I∞) we must write the equation for R in the integrated
form
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R(t) =
∫ t

t−ω
αI(x)dx

to give R∞ = ωαI∞. We also have βS∞ = α , and from S∞ + I∞ +R∞ = N we obtain

β I∞ =
βN −α
1+ωα

.

The characteristic equation at an equilibrium is the condition that the lineariza-
tion at the equilibrium have a solution whose components are constant multiples of
eλ t . In the ordinary differential equation case this is just the equation that determines
the eigenvalues of the coefficient matrix, a polynomial equation, but in the general
case it is a transcendental equation. The result on which our analysis depends is
that an equilibrium is asymptotically stable if all roots of the characteristic equa-
tion have negative real part, or equivalently that the characteristic equation have
no roots with real part greater than or equal to zero.

To linearize about an equilibrium (S∞, I∞) of (10.15) we substitute

S(t) = S∞ +u(t), I(t) = I∞ + v(t),

and neglect the quadratic term, giving the linearization

u′(t) = −β I∞u(t)−βS∞v(t)+αv(t −ω),

v′(t) = β I∞u(t)+βS∞v(t)−αv(t).

The characteristic equation is the condition on λ that this linearization have a
solution

u(t) = u0eλ t , v(t) = v0eλ t ,

and this is

(β I∞ +λ )u0 +(βS∞ −αe−λω) = 0,
β I∞u0 +(βS∞ −α −λ ) = 0,

or

det
[

λ +β I∞ βS∞ −αeλω

β I∞ βS∞ −α −λ

]
.

This reduces to

βαI∞
1− e−ωλ

λ
=−[λ +βS∞ +β I∞ −α]. (10.16)

At the disease-free equilibrium S∞ = N, I∞ = 0, this reduces to a linear equation
with a single root λ = βN −α , which is negative if and only if R0 = βN/α < 1.

We think of ω and N as fixed and consider β and α as parameters. If α = 0, the
equation (10.16) is linear and its only root is −β I∞ < 0. Thus, there is a region in
the (β , α) parameter space containing the β -axis in which all roots of (10.16) have
negative real part. In order to find how large this stability region is we make use
of the fact that the roots of (10.16) depend continuously on β and α . A root can
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move into the right half-plane only by passing through the value zero or by crossing
the imaginary axis as β and α vary. Thus, the stability region contains the β -axis
and extends into the plane until there is a root λ = 0 or until there is a pair of pure
imaginary roots λ =±iy with y > 0. Since the left side of (10.16) is positive and the
right side of (10.16) is negative for real λ ≥ 0, there can not be a root λ = 0.

The condition that there is a root λ = iy is

αβ I∞
1− e−iωα

iy
=−(β I∞ + iy), (10.17)

and separation into real and imaginary parts gives the pair of equations

α
sinωy

y
=−1, αβ I∞

1− cosωy
y

= y. (10.18)

To satisfy the first condition it is necessary to have ωα > 1, since |sin ωy| ≤ |ωy|
for all y. This implies, in particular, that the endemic equilibrium is asymptotically
stable if ωα < 1. In addition, it is necessary to have sin ωy < 0. There is an infinite
sequence of intervals on which sin ωy < 0, the first being π < ωy < 2π . For each of
these intervals the equations (10.18) define a curve in the (β , α) plane parametrically
with y as parameter. The region in the plane below the first of these curves is the
region of asymptotic stability, that is, the set of values of β and α for which the
endemic equilibrium is asymptotically stable. This curve is shown for ω = 1, N = 1
in Figure 10.1. Since R0 = β/α > 1, only the portion of the (β ,α) plane below the
line γ = β is relevant.

Fig. 10.1 Region of asymptotic stability for endemic equilibria (ω = 1, N = 1).
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The new feature of the model of this section is that the endemic equilibrium is
not asymptotically stable for all parameter values. What is the behavior of the model
if the parameters are such that the endemic equilibrium is unstable? A plausible
suggestion is that since the loss of stability corresponds to a root λ = iy of the
characteristic equation, there are solutions of the model behaving like the real part of
eiyt , that is, there are periodic solutions. This is exactly what does happen according
to a very general result called the Hopf bifurcation theorem, which says that when
roots of the characteristic equation cross the imaginary axis a stable periodic orbit
arises.

From an epidemiological point of view, periodic behavior is unpleasant. It im-
plies fluctuations in the number of infectives, which makes it difficult to allocate
resources for treatment. It is also possible for oscillations to have a long period. This
means that if data are measured over only a small time interval the actual behavior
may not be displayed. Thus, the identification of situations in which an endemic
equilibrium is unstable is an important problem.

Exercises

1. Verify that the basic reproduction number of the SIRS model (10.14) is βN/α .
2. Verify that the basic reproduction number of the model (10.15) is βN/α .
3. If we add vaccination that reduces susceptibility by a factor σ at a rate ϕ to the

model (10.14), we obtain a system

S′ = −βSI −ϕS+θR,

V ′ = ϕS−σβV I, (10.19)
I′ = βSI +σβV I −αI,

R′ = αI −θR.

Determine the basic reproduction number of the model (10.19) and find all
endemic equilibria.

10.5 Diseases as Population Control

Many parts of the world experienced very rapid population growth in the eighteenth
century. The population of Europe increased from 118 million in 1700 to 187 mil-
lion in 1800. In the same time period, the population of Great Britain increased from
5.8 million to 9.15 million, and the population of China increased from 150 million
to 313 million [McNeill (1976)]. The population of the English colonies in North
America grew much more rapidly than this, aided by substantial immigration from
England, but the native population, which had been reduced to one-tenth of their
previous size by disease following the early encounters with Europeans and Euro-
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pean diseases, grew even more rapidly. While some of these population increases
may be explained by improvements in agriculture and food production, it appears
that an even more important factor was the decrease in the death rate due to dis-
eases. Disease death rates dropped sharply in the eighteenth century, partly from
better understanding of the links between illness and sanitation and partly because
the recurring invasions of bubonic plague subsided, perhaps due to reduced suscep-
tibility. One plausible explanation for these population increases is that the bubonic
plague invasions served to control the population size, and when this control was
removed, the population size increased rapidly.

In developing countries it is quite common to have high birth rates and high
disease death rates. In fact, when disease death rates are reduced by improvements
in health care and sanitation, it is common for birth rates to decline as well, as
families no longer need to have as many children to ensure that enough children
survive to take care of the older generations. Again, it is plausible to assume that
population size would grow exponentially in the absence of disease but is controlled
by disease mortality.

The SIR model with births and deaths of Kermack and McKendrick (1932) in-
cludes births in the susceptible class proportional to population size and a natural
death rate in each class proportional to the size of the class. Let us analyze a model
of this type with birth rate r and a natural death rate μ < r. For simplicity we assume
that the disease is fatal to all infectives with disease death rate α , so that there is no
removed class and the total population size is N = S+ I. Our model is

S′ = r(S+ I)−βSI −μS (10.20)
I′ = βSI − (μ +α)I .

From the second equation we see that equilibria are given by either I = 0 or βS =
μ +α . If I = 0, the first equilibrium equation is rS = μS, which implies S = 0, since
r > μ . It is easy to see that the equilibrium (0,0) is unstable. What actually would
happen if I = 0 is that the susceptible population would grow exponentially with
exponent r−μ > 0. If βS = μ +α , the first equilibrium condition gives

r
μ +α

β
+ rI − (μ +α)I − μ(μ +α)

β
= 0 ,

which leads to

(α +μ − r)I =
(r−μ)(μ +α)

β
.

Thus, there is an endemic equilibrium, provided r < α + μ , and it is possible to
show by linearizing about this equilibrium that it is asymptotically stable. On the
other hand, if r > α +μ , there is no positive equilibrium value for I. In this case we
may add the two differential equations of the model to give

N′ = (r−μ)N −αI ≥ (r−μ)N −αN = (r−μ −α)N,
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and from this we may deduce that N grows exponentially. For this model either
we have an asymptotically stable endemic equilibrium or population size grows
exponentially. In the case of exponential population growth, we may have either
vanishing of the infection or an exponentially growing number of infectives.

If only susceptibles contribute to the birth rate, as may be expected if the dis-
ease is sufficiently debilitating, the behaviour of the model is quite different. Let us
consider the model

S′ = rS−βSI −μS = S(r−μ −β I), (10.21)
I′ = βSI − (μ +α)I = I(βS−μ −α),

which has the same form as the Lotka–Volterra predator–prey model of popula-
tion dynamics. This system has two equilibria, obtained by setting the right sides
of each of the equations equal to zero, namely (0,0) and an endemic equilibrium
((μ +α)/β ,(r−μ)/β ). It turns out that the qualitative analysis approach we have
been using is not helpful, since the equilibrium (0,0) is unstable and the eigenval-
ues of the coefficient matrix at the endemic equilibrium have real part zero. In this
case, the behavior of the linearization does not necessarily carry over to the full sys-
tem. However, we can obtain information about the behaviour of the system by a
method that begins with the elementary approach of separation of variables for first-
order differential equations. We begin by taking the quotient of the two differential
equations and using the relation

I′

S′
=

dI
dS

to obtain the separable first-order differential equation

dI
dS

=
I(βS−μ −α)

S(r−β I)
.

Separation of variables gives∫ ( r
I
−β

)
dI =

∫ (
β − μ +α

S

)
dS .

Integration gives the relation

β (S+ I)− r log I − (μ +α) logS = c,

where c is a constant of integration. This relation shows that the quantity

V (S, I) = β (S+ I)− r log I − (μ +α) logS

is constant on each orbit (path of a solution in the (S, I) plane). Each of these orbits
is a closed curve corresponding to a periodic solution.

This model is the same as the simple epidemic model of Section 9.2 except for
the birth and death terms, and in many examples the time scale of the disease is
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much faster than the time scale of the demographic process. We may view the model
as describing an epidemic initially, leaving a susceptible population small enough
that infection cannot establish itself. Then there is a steady population growth until
the number of susceptibles is large enough for an epidemic to recur. During this
growth stage the infective population is very small, and random effects may wipe
out the infection, but the immigration of a small number of infectives will eventu-
ally restart the process. As a result, we would expect recurrent epidemics. In fact,
bubonic plague epidemics did recur in Europe for several hundred years. If we mod-
ify the demographic part of the model to assume limited population growth rather
than exponential growth in the absence of disease, the effect would be to give be-
havior like that of the model studied in the previous section, with an endemic equi-
librium that is approached slowly in an oscillatory manner if R0 > 1.

Exercises

1. Consider the model (10.21).

(i) Show that there are always two equilibria, an extinction equilibrium (0,0)
and a coexistence equilibrium with

βS = μ +α, β I = r−μ.

(ii) Show that both equilibria are unstable, in fact saddle points.

10.6 Parameter Estimation: Ordinary Least Squares

10.6.1 Connecting Models to Data

This book is concerned primarily with theoretical models for natural phenomena.
Such models necessarily contain parameters whose values must be estimated in or-
der to make it possible to compare model predictions with real-life data. The chal-
lenges of connecting models and data and the validation of models are critically
important in science. In fact, one of the first recorded modeling contributions in the
field of epidemiology was that of Daniel Bernoulli (1766), which focused on the
increase in the average life expectancy generated by elimination of a lethal disease,
a study related directly to data on a single smallpox outbreak, an intellectual con-
tribution that has been analyzed in detail and expanded by Dietz and Heesterbeeck
(2002).

In 2004 Sally Blower observed that

In the current debate concerning whether the United States population should be vaccinated
against smallpox (in order to prepare for a possible terrorist attack) critics of mass vacci-
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nation have argued that the risks associated with widespread usage of the current smallpox
vaccine would outweigh the potential benefits. Over 200 years ago, opponents of smallpox
variolation in the 18th century used the same arguments. They argued that: (i) inoculation
was risky because artificial smallpox could cause mortality, and (ii) inoculation programs
could increase the transmission of smallpox (because individuals inoculated with artificial
smallpox could transmit smallpox). Bernoulli used mathematical reasoning to counter both
arguments.

[ibid, page 285]. She further observes that as we do today, for example,

Bernoulli conducted a [rudimentary] form of sensitivity analysis by changing assumptions
and parameter values and then presenting a series of analyses. In Bernoulli’s first series
of calculations he assumed that 100% of newborns would be inoculated, that inoculation
would induce complete immunity to infection by the wild-type strains of smallpox, and that
inoculation would carry no risks. Under these assumptions he calculated that an individual’s
expectation of life at birth would increase from 26 years 7 months to 29 years 9 months.
Bernoulli then repeated his calculations including the assumption that one individual out of
every 200 inoculated individuals would die as the result of artificial smallpox.

[ibid, 286-287]. Blower concludes that:

It is not clear how influential Bernoulli’s paper was in influencing public health policy, but
it remains a classic paper as it was the first known mathematical analysis that was used to
try to influence public health policy.

[ibid, 287].
Efforts to connect models to data increased dramatically with the onset of the

HIV epidemic, with emphasis on the estimation of the incubation period distribu-
tion for HIV (“back calculation”) in efforts to estimate the number of individuals
with asymptomatic HIV infections [Anderson et al. (1989), Bailey (1988), Brook-
meyer and Gail (1988), Cox and Medley (1989), Hyman and Stanley (1988), Isham
(1989), Lagakos et al. (1988), Medley et al. (1987), Wilkie (1989), Castillo-Chavez
(1989)]. Additional efforts to connect models to data for the purposes of forecasting
and assisting public health decisions gained additional impetus with the emergence
of SARS in 2002 [Chowell et al. 2003, Chowell et al. (2004a), Bettencourt et al.
(2007, 2006), Gumel et al. (2004)] and the threat of bioterrorism after the tragic
events of September 11, 2001 in the United States [Banks and Castillo-Chavez
(2003), and Zeng et al. (2011)]. More recently, seasonal and pandemic influenza
have been important drivers of the theory giving rise to a large number of articles
such as [Nishiura et al. (2009, 2010, 2011)]. Three volumes with a large number of
contributions that involve connecting models to data include[Gumel et al. (2006),
Chowell et al. (2009), and Castillo-Chavez and Chowell (2011)]. Methods that con-
nect statistical theory and dynamical systems have been refined to improve our abil-
ity to connect model and epidemiological data [Ortiz et al. (2011), Sutton et al.
(2010a, 2010b, 2008), Cintron-Arias et al. (2008), Shim et al. (2006)]. Next, we
outline the “essentials” of the most typical parameter estimation approach, ordinary
least squares (OLS) estimation, in the context of the classical S− IR epidemiological
model.
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10.6.2 Ordinary Least Squares (OLS) Estimation

The formulation of the standard ordinary least squares formulation usually involves
two models: mathematical and statistical. The mathematical model used here is a
compartmental mathematical model, which is given in terms of a nonlinear system
of ordinary differential equations involving a parameter vector θ . Specifically, we
have

dx
dt

= g(x(t;θ);θ), (10.22)

where x(t;θ) ∈ R
n denotes the state variable vector at time t and θ ∈ R

p denotes
the parameter vector.

The statistical model linked to the process generated by the dynamical system
is formulated under the assumption that the model output and associated random
deviations (measurement error) are captured by the random variables

Yj = z(t j;θ0)+E j for j = 1, . . . ,n, (10.23)

where z(t j;θ0) denotes the output of the mathematical model. Usually the model
output is a functional of the state variable vector, that is, z(t;θ) = F (x(t;θ)), and
in equation (10.23) the model output is evaluated at θ = θ0, the “true” parameter
vector. The random variables E j model the random deviations away from z(t,θ0)
and are assumed to satisfy

1. E j’s are independent and identically distributed random variables;
2. E[E j] = 0 for every j;
3. var(E j) = σ2

0 < ∞, for every j.

The ordinary least squares problem arises from efforts to minimize [Yj − z(t j;θ)]2

over the set of parameter vectors θ constrained by a prespecified feasible region,
here denoted by Θ . The minimizer is a random variable, called the estimator θOLS
and given in this context by

θOLS = argminθ∈Θ

n

∑
j=1

[Yj − z(t j;θ)]2 . (10.24)

The usefulness of the estimator θOLS derives from its statistical properties. A
classical asymptotic result, in the spirit of a central limit theorem, establishes that for
n sufficiently large, this estimator has a p-multivariate normal sampling distribution.
In other words,

θOLS ∼ Np(θ0,Σ0),

where Σ0 = n−1σ2
0 Ω−1

0 and Ω0 = limn→∞
1
n χ(θ0)

T χ(θ0), provided this limit exists
and the matrix Ω0 is nonsingular. The p× p matrix Σ0 is the covariance matrix of the
θOLS estimator, while the matrix χ(θ0) is n× p and is called the sensitivity matrix,
with its (i, j) entry defined by
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χi j(θ) =
∂ z(ti;θ)

∂θ j
, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

[Banks and Tran (2009)]. The theoretical quantities θ0, σ2
0 , and Σ0 are in general

unknown. In practice, one has only the data associated with a single realization yi
of the observation process Yi (for i = 1, . . . ,n) and has no option but to solve the
minimization problem, that is, the computation of an estimate for θ̂OLS under these
conditions. That is, we carry out the following minimization process:

θ̂OLS = argminθ∈Θ

n

∑
j=1

[y j − z(t j;θ)]2 .

The estimate obtained is then used to approximate the error assuming constant vari-
ance σ2

0 via the approximation

σ2
0 ≈ σ̂2

OLS =
1

n− p

n

∑
j=1

[
y j − z(t j; θ̂OLS)

]2
.

The covariance matrix Σ0 can also be approximated using θ̂OLS and σ̂2
OLS as follows:

Σ0 ≈ Σ̂OLS = σ̂2
OLS

[
χ(θ̂OLS)

T χ(θ̂OLS)
]−1

.

We proceed to apply the above OLS methodology to a well-known compartmen-
tal model and an influenza data set. In 1978, an outbreak of influenza was reported in
a boarding school for boys in the United Kingdom [Communicable Disease Surveil-
lance Centre (1978)]. The single outbreak is modeled using the classical SIR com-
partmental model given by the following set of nonlinear differential equations:

dS
dt

= −βS
I
N
,

dI
dt

= βS
I
N
− γI,

dR
dt

= γI,

N = S(t)+ I(t)+R(t),

S(0) = S0,

I(0) = I0.

The dataset reported in [Communicable Disease Surveillance Centre (1978)] cor-
responds to the prevalence of influenza, and therefore, the output in this case is
modeled by

z(t;θ) = I(t;θ),

from which the statistical model for the observation process becomes

Yj = I(t j;θ0)+E j for j = 1, . . . ,n. (10.25)
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In this case, it was reported that N = 763, and so the conditions at the start of
this outbreak can be assumed to be S0 = 762 and I0 = 1. The parameter vector to
be estimated involves the transmission coefficient β and the recovery rate γ , that is,
θ = (β ,γ). The data set in [Communicable Disease Surveillance Centre (1978)] is
denoted by yi for i = 1, . . . ,12, and it is used to compute

θ̂OLS = argminθ∈Θ

12

∑
j=1

[y j − z(t j;θ)]2 .

The minimization leads to an estimate of θ = (β ,γ). The minimization can be
carried out in multiple ways. There are in fact several optimization algorithms
(for example, Nelder–Mead simplex), and, for example, the computing software
Matlab (Mathworks, Inc) includes the following appropriate optimization routines
fminsearch, fmincon,
lsqcurvefit, lsqnonlin.

Fig. 10.2 Prevalence of an influenza outbreak in a boarding school for boys, UK [Communicable
Disease Surveillance Centre (1978)]. Total population size, N = 763, initial number of susceptible,
S0 = 762, and initial number of infectives, I0 = 1. Parameter estimates with one standard error:
β̂ = 1.6682±0.0294 (days−1), γ̂ = 0.4417±0.0177 (days−1).

Figure 10.2 displays the prevalence data (circles) and the best fit solution I(t; θ̂OLS)
(solid curve) versus time generated by the solution of the dynamical system and the
optimization process. The results look “good”, but the uncertainty in the estimation
can be quantified, and here is where statistical theory comes in [Banks and Tran
(2009)]. One way of quantifying uncertainty requires the computation of Σ̂OLS. In
this illustration the sensitivities (entries of Σ̂OLS) are defined as
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∂ z
∂β

(t j;θ) =
∂ I
∂β

(t j;θ),

∂ z
∂γ

(t j;θ) =
∂ I
∂γ

(t j;θ).

Numerical values are computed by solving

d
dt

x(t) = g(x(t; θ̂); θ̂),

d
dt

φ(t) =
∂g
∂x

φ(t)+
∂g
∂θ

,

where φ(t) = ∂x
∂θ (t;θ),

∂g
∂x

=

⎡⎢⎢⎢⎢⎣
−β̂ I

N −β̂ S
N 0

β̂ I
N β̂ S

N − γ̂ 0

0 γ̂ 0

⎤⎥⎥⎥⎥⎦ ,

and

∂g
∂θ

=

⎡⎢⎢⎢⎢⎣
−S I

N 0

S I
N −I

0 I

⎤⎥⎥⎥⎥⎦ .

In this case (influenza data), the OLS estimation of the covariance matrix is

Σ̂OLS = σ̂2 [χ(θ̂OLS)
T χ(θ̂OLS)

]−1
=

⎡⎣0.8615×10−3 0.1946×10−3

0.1946×10−3 0.3140×10−3

⎤⎦ ,

with the standard errors calculated by taking the square root of the diagonal entries
in Σ̂OLS. The estimates, within one standard error, are therefore given by

β̂ = 1.6682±0.0294 (days−1)

and
γ̂ = 0.4417±0.0177 (days−1).

Estimation can go further. For example, it is often important to estimate the ef-
fective reproductive number R(t), defined by the expression

R(t)≡ R(t;θ) =
β
γ

S(t;θ)
N

.
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In order to estimate R(t), we rewrite the equation for the infective population
(10.25) as follows:

dI
dt

= γ(R(t)−1)I.

Here, R(t) = S
N R0 is the effective reproduction number and R0 = β/γ is the basic

reproductive number). We have R(t)≤ R0, with the upper bound, the basic repro-
ductive number, being achieved only when the entire population is susceptible.

Days Cases
3 25
4 75
5 228
6 297
7 259
8 235
9 192
10 126
11 71
12 28
13 9
14 7

Table 10.1 Influenza prevalence, 1978 UK Boarding School.

Here, R(t) is defined as the product of the transmission rate and the average in-
fectious period, that is, the effective reproductive number gives the average number
of secondary infections caused by a single infective individual, at a given suscepti-
ble fraction. The prevalence of infection increases or decreases according to whether
R0(t) is greater than or less than one. Since there is no replenishment of the sus-
ceptible population in this model, R0(t) decreases over the course of an outbreak as
susceptible individuals become infected.

Using θ̂OLS we can compute the relevant point-estimate (without uncertainty
bounds) curve given by

R(t; θ̂OLS) =
β̂
γ̂

S(t; θ̂OLS)

N
.

Figure 10.3 displays R(t; θ̂OLS) versus time t.



10.7 Possible Extensions 441

Fig. 10.3 Effective reproductive number R(t; θ̂OLS) versus time t. This curve is a point-estimate
curve calculated using the estimate θ̂OLS = (β̂ , γ̂).

10.7 Possible Extensions

As we have seen, in a large variety of models, the behavior when R0 < 1 is different
from the behavior when R0 > 1. More precisely, as R0 increases through 1 there
is an exchange of stability between the disease-free equilibrium and the endemic
equilibrium (which is negative as well as unstable and thus biologically meaningless
if R0 < 1). There is a bifurcation, or change in equilibrium behavior, at R0 = 1,
but the equilibrium infective population size depends continuously on R0. Such
a transition is called a forward, or transcritical, bifurcation. It is also possible, as
we have seen in an SIRS model, that the endemic equilibrium for R0 > 1 may be
unstable, depending on the distribution of infective periods.

However, it would be a serious mistake to assume that this normal situation is
universal. It has been noted [Dushoff, Huang and Castillo-Chavez(1998), Hadeler
and Castillo-Chavez (1995), Hadeler and van den Driessche (1997), Kribs-Zaleta
and Velasco-Hernandez (2000)] that in epidemic models with multiple groups and
asymmetry between groups or multiple interaction mechanisms, it is possible to
have a very different bifurcation behavior at R0 = 1. There may be multiple positive
endemic equilibria for values of R0 < 1. Typically, there is an interval of values of
R0 on which there are two asymptotically stable equilibria, one disease-free and
one endemic, and an unstable endemic equilibrium between them. Such a situation
is called a backward bifurcation at R0 = 1.

The qualitative behavior of an epidemic system with a backward bifurcation dif-
fers from that of a system with a forward bifurcation in at least three important ways.
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If there is a forward bifurcation at R0 = 1, it is not possible for a disease to invade a
population if R0 < 1, because the system will return to the disease-free equilibrium
I = 0 if some infectives are introduced into the population. On the other hand, if
there is a backward bifurcation at R0 = 1 and enough infectives are introduced into
the population to put the initial state of the system above the unstable endemic equi-
librium with R0 < 1, the system will approach the asymptotically stable endemic
equilibrium.

Other differences are observed if the parameters of the system change to pro-
duce a change in R0. With a forward bifurcation at R0 = 1 the equilibrium infective
population remains zero so long as R0 < 1 and then increases continuously as R0
increases. With a backward bifurcation at R0 = 1, the equilibrium infective popula-
tion size also remains zero so long as R0 < 1 but then jumps to the positive endemic
equilibrium as R0 increases through 1. In the other direction, if a disease is being
controlled by means that decrease R0, it is sufficient to decrease R0 to 1 if there is
a forward bifurcation at R0 = 1, but it is necessary to bring R0 well below 1 if there
is a backward bifurcation.

We have been assuming homogeneous mixing of members of the population be-
ing studied, and this is certainly unrealistically simple. Members of the population
may differ, for example, in rate of contact or in location. In the study of sexually
transmitted diseases, differences in activity levels are important aspects. Contact
rates may be age-dependent, and this would suggest the use of age-structured mod-
els. Spatial dependence may take two forms, the local diffusion of members of the
population, which would lead to partial differential equations of reaction–diffusion
types, and travel between communities, which would lead to patch or metapopula-
tion models.

Models incorporating one or more of these kinds of heterogeneity can be devel-
oped and analyzed. Inevitably, their analysis involves more structure, equations, and
parameters, as well as more sophisticated mathematical methods.

There are other modes of transmission of communicable diseases that can be de-
scribed by compartmental models. Some infections can be transmitted vertically, for
example, from mother to daughter prior to birth [Busenberg and Cooke (1993)]. An-
other form is transmission by a vector. For example, malaria is transmitted back and
forth between humans and mosquitoes. Thus an infected mosquito may bite a hu-
man and thus infect the human. An uninfected mosquito may bite an infected human
and become infected, but infection is not transmitted directly from human to human
or from mosquito to mosquito [Ross (1911). Sexually transmitted diseases that are
transmitted by heterosexual contact are also examples of vector transmission, with
male and females playing the roles of the two species.
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10.8 Project: Pulse Vaccination

Consider an SIR model eqrefeqsec8a41. For measles, typical parameter choices are
μ = 0.02, β = 1800, α = 100, K = 1 (to normalize carrying capacity to 1) [Engbert
and Drepper (1984)].

Question 1.
Show that for these parameter choices R0 ≈ 18 and to achieve herd immunity would
require vaccination of about 95 percent of the susceptible population.

In practice, it is not possible to vaccinate 95 percent of a population because not
all members of the population would come to be vaccinated and not all vaccinations
are successful. One way to avoid recurring outbreaks of disease is “pulse vaccina-
tion” [Agur, Mazor, Anderson, and Danon (1993), Shulgin, Stone, and Agur (1998),
Stone, Shulgin, and Agur (2000)]. The basic idea behind pulse vaccination is to vac-
cinate a given fraction p of the susceptible population at intervals of time T with T
(depending on p) chosen to ensure that the number of infectives remains small and
approaches zero. In this project we will give two approaches to the calculation of a
suitable function T (p).

The first approach depends on the observation that I decreases so long as S<Γ <
(μ +γ)/β . We begin by vaccinating pΓ members, beginning with S(0) = (1− p)Γ .
From (8.7),

S′ = μK −μS−βSI ≥ μK −μS.

Then S(t) is greater than the solution of the initial value problem

S′ = μK −μS, S(0) = (1− p)Γ .

Question 2.
Solve this initial value problem and show that the solution obeys

S(t)< Γ f or0 ≤ t <
1
μ

log
K − (1− p)Γ

K −Γ
.

Thus a suitable choice for T (p) is

T (p) =
1
μ

log
K − (1− p)Γ

K −Γ
=

1
μ

log
[

1+
pΓ

K −Γ

]
.

Calculate T (p) for p = m/10 (m = 1,2, . . . ,10).

The second approach is more sophisticated. Start with I = 0, S′ = μK − μS.
We let tn = nT (n = 0,1,2, . . . ) and run the system for 0 ≤ t ≤ t1 = T . Then we
let S1 = (1− p)S(t1). We then repeat, i.e., for t1 ≤ t ≤ t2, S(t) is the solution of
S′ = μK−μS, S(t1) = S1, and S2 = (1− p)S1. We obtain a sequence Sn in this way.
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Question 3.
Show that

Sn+1 = (1− p)K(1− e−μT )+(1− p)Sne−μT

and for tn ≤ t ≤ tn+1,

S(t) = K
[
1− e−μ(t−tn)

]
+Sne−μ(t−tn).

Question 4.
Show that the solution is periodic if

Sn+1 = Sn = S∗ (n = 0,1,2, . . .)

with

S∗ = K
[

1− peμT

eμT − (1− p)

]
and that the periodic solution is

S(t) =

⎧⎪⎪⎨⎪⎪⎩
K
[
1− peμT

eμT−(1−p)e−μ(t−tn)
]

f or tn ≤ t ≤ tn+1,

S∗ f or t = tn1 ,

I(t) = 0.

It is possible to show by linearizing about this periodic solution that the periodic
solution is asymptotically stable if

1
T

∫ T

0
S(t)dt <

μ +ξ
β

.

If this condition is satisfied, the infective population will remain close to zero.

Question 5.
Show that this stability condition reduces to

K(μT − p)(eμT −1)+ pKμT
μT [eμ − (1− p)]

<
μ +ξ

β
.

Question 6.
Use a computer algebra system to graph T (p), where T is defined implicitly by

K(μT − p)(eμT −1)+ pKμT
μT [eμ − (1− p)]

=
μ +ξ

β
.
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Compare this expression for T with the one obtained earlier in Question 2 in this
project. A larger estimate for a safe value of T would save money by allowing less
frequent vaccination pulses.

10.9 Project: A Model with Competing Disease Strains

We model a general discrete-time SIS model with two competing strains in a popu-
lation with discrete and nonoverlapping generations. This model arises from a par-
ticular discretization in time of the corresponding SIS continuous-time stochastic
model for two competing strains.

State variables

Sn population of susceptible individuals in generation n
I1
n population of infected individuals with strain 1 in generation n

I2
n population of infected individuals with strain 2 in generation n

Tn total population in generation n
f recruitment function

Parameters

μ per capita natural death rate
γi per capita recovery rate for strain i
αi per capita infection rate for strain i

Construction of the model equations: The model assumes that (i) the disease is
not fatal; (ii) all recruits are susceptible and the recruitment function depends only
on Tn; (iii) there are no coinfections; (iv) death, infections, and recoveries are mod-
eled as Poisson processes with rates μ,αi,γi (i = 1,2); (v) the time step is measured
in generations; (vi) the populations change only because of “births” (given by the
recruitment function), deaths, recovery, and infection of a susceptible individual for
each strain; (vii) individuals recover but do not develop permanent or temporary
immunity, that is, they immediately become susceptible again.
By assumption we have that the probability of k successful encounters is a Poisson
distribution, which in general has the form p(k) = e−β β k/k!, where β is the param-
eter of the Poisson distribution. In our context, only one success is necessary. There-
fore, when there are no successful encounters, the expression p(0) = e−β represents
the probability that a given event does not occur. For example, the probability that a
susceptible individual does not become infective is Prob(not being infected by strain
i) = e−αiIi

n , and, Prob(not recovering from strain i) = e−γiIi
n . Hence, Prob(not being

infected)= Prob(not being infected by strain 1)Prob(not being infected by strain 2)
= e−α1I1

n e−α2I2
n .
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Now the probability that a susceptible does become infected is given by 1−
e−αiIi

n . Then, Prob(infected by strain i) = Prob(infected). Prob(infected by strain i |
infected) =(1− e−(α1I1

n+α2I2
n )) αiIi

n
α1I1

n+α2I2
n

.

(a) Using the above discussion, show that the dynamics are governed by the system

Sn+1 = f (Tn)+Sne−µ e−(α1I1
n+α2I2

n )+ I1
n e−µ(1− e−γ1)+ I2

n e−µ
(
1− e−γ2

)
,

(10.26)
I1
n+1 =

α1SnI1
n

α1I1
n +α2I2

n
e−µ(1− e−(α1I1

n+α2I2
n ))+ I1

n e−µ e−γ1 ,

I2
n+1 =

α2SnI2
n

α1I1
n +α2I2

n
e−µ(1− e−(α1I1

n+α2I2
n ))+ I2

n e−µ e−γ2 .

(b) Show that
Tn+1 = f (Tn)+Tne−µ ,

where
Tn = Sn + I1

n + I2
n . (10.27)

This equation is called the demographic equation. It describes the total popu-
lation dynamics.

(c) If we set I1
n+1 = I2

n+1 = 0, then model (10.26) reduces to the demographic model

Tn+1 = f (Tn)+Tne−µ .

Check that this is the case.
(d) Study the disease dynamics at a demographic equilibrium, that is, at a point

where T∞ = T∞e−µ + f (T∞). Substitute Sn = T∞− In
1− I2

n where T∞ is a stable
demographic equilibrium, that is, assume T0 = T∞ to get the following equa-
tions:

I1
n+1 =

α1I1
n

α1I1
n +α2I2

n
(T∞− I1

n − I2
n )e
−µ

(
1− e−(α1I1

n+α2I2
n )
)
+ I1

n e−µ e−γ1 ,

(10.28)

I2
n+1 =

α2I2
n

α1I1
n +α2I2

n
(T∞− I1

n − I2
n )e
−µ

(
1− e−(α1I1

n+α2I2
n )
)
+ I2

n e−µ e−γ2 .

System (10.28) describes the dynamics of a population infected with the two
strains at a demographic equilibrium.
Show that in system (10.28), if R1 = e−µ T∞α1

1−e−(µ+γ1)
< 1 and R2 = e−µ T∞α2

1−e−(µ+γ2)
< 1,

then the equilibrium point (0,0) is asymptotically stable.
(e) Interpret biologically the numbers Ri, i = 1,2.
(f) Consider f (Tn) = Λ , where Λ is a constant. Show that

Tn+1 = Λ +Tne−µ

and that
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T∞ =
Λ

1− e−μ .

(g) Consider f (Tn) = rTn(1−Tn)/k), and show that in this case the total population
dynamic is given by,

Tn+1 = rTn

(
1− Tn

k

)
+Tne−μ

and that the fixed points are

Tn
∗ = 0, Tn

∗∗ =
k(r+ e−μ −1)

r
,

whenever r+ e−μ > 1.
(h) Assume that one of the strains is missing, that is, let Ii

n = 0 for either i = 1 or
2. Equation (10.28) reduces to

In+1 = (T∞ − In)e−μ(1− eα1In)+ Ine−(μ+γ).

Establish necesary and sufficient conditions for the stability and/or instability
of boundary equilibria for the system (10.28). Compare your results with sim-
ulations of the system (10.28) and of the full system (10.26).

(i) Does the system (10.28) have endemic (I∗1 > 0, I∗2 > 0) equilibria?
(j) Simulate the full system (10.26) when the demographic equation is in the pe-

riod doubling regime. What are your conclusions?

References: Perez-Velazquez (2000) and Castillo-Chavez, Huang, and Li (1996a,
1997). (2000).

10.10 Project: An Epidemic Model in Two Patches

Consider the following SIS model with dispersion between two patches, Patch 1
and Patch 2, where in Patch i ∈ {1,2} at generation t, Si(t) denotes the population
of susceptible individuals; Ii(t) denotes the population of infecteds assumed infec-
tious; Ti(t) ≡ Si(t)+ Ii(t) denotes the total population size. The constant dispersion
coefficients DS and DI measure the probability of dispersion by the susceptible and
infective individuals, respectively. Observe that we are using a different notation
from what we have used elsewhere, writing variables as a function of t rather than
using a subscript for the independent variable in order to avoid needing double sub-
scripts:

S1(t +1) = (1−DS)S̃1(t)+DSS̃2(t),
I1(t +1) = (1−DI)Ĩ1(t)+DIĨ2(t),
S2(t +1) = DSS̃1(t)+(1−DS)S̃2(t),
I2(t +1) = DIĨ1(t)+(1−DI)Ĩ2(t),
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where

S̃i(t) = fi(Ti(t))+ γiSi(t)exp(
−αiIi(t)

Ti(t)
)+ γiIi(t)(1−σi),

Ĩi(t) = γi(1− exp(
−αiIi(t)

Ti(t)
))Si(t)+ γiσiIi(t)

and
0 ≤ γi,σi,αi,DS,DI ≤ 1.

Let
fi(Ti(t)) = Ti(t)exp(ri −Ti(t)),

where ri is a positive constant.
(a)Using computer explorations, determine whether it is possible to have a glob-

ally stable disease-free equilibrium on a patch (without dispersal) where the full
system with dispersal has a stable endemic equilibrium. Do you have a conjecture?
(b) Using computer explorations determine whether it is possible to have a glob-
ally stable endemic equilibrium on a patch (without dispersal) where the full system
with dispersal has a stable disease-free equilibrium. Do you have a conjecture?
References: Gonzalez, Sanchez and Saenz (2000), Arreola, Crossa, and Velasco
(2000), Castillo-Chavez and Yakubu (2000a, 2000c).

10.11 Project: Population Growth and Epidemics

When one tries to fit epidemiological data over a long time interval to a model, it
is necessary to include births and deaths in the population. Throughout the book
we have considered population models with birth and death rates that are constant
in time. However, population growth often may be fit better by assuming a linear
population model with a time-dependent growth rate, even though this does not
have a model-based interpretation. There could be many reasons for variations in
birth and death rates; we could not quantify the variations even if we knew all of
the reasons. Let r(t) = dN

dt /N denote the time-dependent per capita growth rate. To
estimate r(t) from linear interpolation of census data, proceed as follows:

1. Let Ni and Ni+1 be the consecutive census measurements of population size
taken at times ti and ti+1 respectively. Let ΔN = Ni+1 −Ni, Δ t = ti+1 − ti, and
δN = N(t +δ t)−N(t).

2. If ti ≤ t ≤ ti+1, ΔN
Δ t = δN

δ t , then we make the estimate r(t)≈ ΔN
Δ tN(t) .

3. A better approximation is obtained by replacing N(t) by N(t + δ t/2). Why?
Show that in this case, r(t)≈ ( δ t

2 + N(t)Δ t
ΔN )−1.

Question 1.
Use the data of Table 10.2 to estimate the growth rate r(t) for the population of the
USA.
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Fig. 10.4 Observed death rate (•) and the best fit obtained with the function (10.29).

1700 250,888 1800 5,308,483 1900 75,994,575
1710 331,711 1810 7,239,881 1910 91,972,266
1720 466,185 1820 9,638,453 1920 105,710,620
1730 629,445 1830 12,866,020 1930 122,775,046
1740 905,563 1840 17,069,453 1940 131,669,275
1750 1,170,760 1850 23,192,876 1950 151,325,798
1760 1,593,625 1860 31,443,321 1960 179,323,175
1770 2,148,076 1870 39,818,449 1970 203,302,031
1780 2,780,369 1880 50,155,783 1980 226,542,199
1790 3,929,214 1890 62,947,714 1990 248,718,301

– – – – 2000 274,634,000

Table 10.2 Population data growth for the USA

Figure 10.4 shows the time evolution of the USA mortality rate. This mortality
rate is fit well by

μ = μ0 +
μ0 −μ f

1+ e(t−t ′1/2)/Δ ′ (10.29)

with μ0 = 0.01948, μ f = 0.008771, t ′1/2 = 1912, and Δ ′ = 16.61. Then the “effective
birth rate” b(t) is defined as the real birth rate plus the immigration rate.

Question 2.
Estimate b(t) using r(t) = b(t)−μ(t), with r(t) found in Question 1.

Consider an SEIR disease transmission model. We assume that:
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(a) An average infective individual produces β new infections per unit of time
when all contacts are with susceptibles but that otherwise, this rate is reduced
by the ratio S/N.

(b) Individuals in the exposed class E progress to the infective class at the per
capita rate k.

(c) There is no disease-induced mortality or permanent immunity, and there is a
mean infective period of 1/γ .

We define γ = r+μ . The model becomes:

dS
dt

= bN −μS−βS
I
N
,

dE
dt

= βS
I
N
− (k+μ)E, (10.30)

dI
dt

= kE − (r+μ)I,

dR
dt

= rI −μR..

Question 3.

(a) Show that the mean number of secondary infections (belonging to the exposed
class) produced by one infective individual in a population of susceptibles is
Q0 = β/γ .

(b) Assuming that k and μ are time-independent, show that R0 is given by Q0 f ,
where f = k/(k+μ). What is the epidemiological interpretation of Q0 f ?

The usual measure of the severity of an epidemic is the incidence of infective
cases. The incidence of infective cases is defined as the number of new infective
individuals per year. If we take one year as the unit of time, the incidence of infec-
tive cases is given approximately by kE. The incidence rate of infective cases per
100,000 population is given approximately by 105kE/N.

Tuberculosis (TB) is an example of a disease with an exposed (noninfective)
stage. Infective individuals are called active TB cases. Estimated incidence of active
TB in the USA was in a growing phase until around 1900 and then experienced a
subsequent decline. The incidence rate of active TB exhibited a declining trend from
1850 (See Table 10.3 and Figure 10.5). The proportion of exposed individuals who
survive the latency period and become infective is f = k

k+μ . The number f will be
used as a measure of the risk of developing active TB by exposed individuals.

Question 4.
Assume that mortality varies according to the expression (10.29), and that the value
of b found in Question 2 is used. Set γ = 1 years−1 and β = 10 years −1, both
constant through time. Simulate TB epidemics starting in 1700 assuming constant
values for f . Can you reproduce the observed trends (Table 10.3)?
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Fig. 10.5 Incidence of active TB

Year Incidence rate Incidence Year Incidence rate Incidence
1953 53 84304 1976 15 32105
1954 49.3 79775 1977 13.9 30145
1955 46.9 77368 1978 13.1 28521
1956 41.6 69895 1979 12.6 27769
1957 39.2 67149 1980 12.3 27749
1958 36.5 63534 1981 11.9 27337
1959 32.5 57535 1982 11 25520
1960 30.8 55494 1983 10.2 23846
1961 29.4 53726 1984 9.4 22255
1962 28.7 53315 1985 9.3 22201
1963 28.7 54042 1986 9.4 22768
1964 26.6 50874 1987 9.3 22517
1965 25.3 49016 1988 9.1 22436
1966 24.4 47767 1989 9.5 23495
1967 23.1 45647 1990 10.3 25701
1969 19.4 39120 1992 10.5 26673
1970 18.3 37137 1993 9.8 25287
1971 17.1 35217 1994 9.4 24361
1972 15.8 32882 1995 8.7 22860
1973 14.8 30998 1996 8 21337
1974 14.2 30122 1997 7.4 19885
1975 15.9 33989 1998 6.8 18361

Table 10.3 Reported incidence and incidence rate (per 100,000 population) of active TB.

It is not possible to obtain a good fit of the data of Table 10.3 to the model (10.30).
It is necessary to use a refinement of the model that includes time-dependence in the
parameters, and the next step is to describe such a model. The risk of progression
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to active TB depends strongly on the standard of living. An indirect measure of the
standard of living can be obtained from the life expectancy at birth. The observed
life expectancy for the USA is approximated well by the sigmoid shape function

τ = τ f +
(τ0 − τ f )

1+ exp[(t − t1/2)/Δ ]
, (10.31)

shown in Figure 10.6. Here τ0 and τ f are asymptotic values for life expectancy;
t1/2 = 1921.3 is the time by which life expectancy reaches the value (τ0 + τ f )/2;
and Δ = 18.445 determines the width of the sigmoid.

Fig. 10.6 Observed average life expectancy at birth (•) and its best fit (continuous line) using
expression (10.31).

Assume that the risk f varies exactly like life expectancy, that is, assume that f
is given by

f (t) = f f +
( fi − f f )

1+ exp[(t − t1/2)/Δ ]
. (10.32)

We refine the model (10.30) by replacing the parameter k by the variable ex-
pression μ f (t)/(1 − f (t) and k + μ by μ/(1 − f (t), obtained from the relation
f = k/(k + μ). Since the time scale of the disease is much faster than the demo-
graphic time scale, the recovery rate r is approximately equal to γ . This gives the
model
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dS
dt

= b(t)N −μ(t)S−βS
I
N
,

dE
dt

= βS
I
N
− μ(t)

1− f (t)
E, (10.33)

dI
dt

=
μ(t) f (t)
1− f (t)

E − γI,

dR
dt

= γI −μ(t)R..

Question 5.
Simulate TB epidemics starting in 1700 using the model (10.33) with γ = 1 years−1

and β = 10 years−1, both constant, and with μ(t) given by (10.29) and f (t) given by
(10.32). Find values of f0 and f f for which an accurate reproduction of the observed
TB trends (Table 10.3) is achieved.

References: Aparicio, Capurro, and Castillo-Chavez (2000a, 2000b, 2001a, 2001d);
U.S. Bureau of the Census (1975, 1980, 1991, 1999); Castillo-Chavez and Feng
(1997, 1998a, 1998b); Feng, Castillo-Chavez, and Capurro (2000); Feng, Huang,
and Castillo-Chavez (2001).

10.12 Project: Estimating Parameters for Leishmaniasis

Leishmaniasis is a vector-borne disease caused by a protozoan parasites and trans-
mitted by the bite of certain species of sand fly (referred as “vector”). Leishmaniasis
is found in many tropical and subtropical countries. The most serious and potentially
fatal, if left untreated, form of leishmaniasis is a “visceral” form. The Indian state
of Bihar is one of the major foci of visceral leishmaniasis (VL) in the world.

Two mathematical models of the spread of VL in Bihar are shown in Figure 10.7.
The models (variables defined in Table 10.12) incorporate the possibility that indi-
viduals seek treatment at private (T ) or public (G) health facilities. The treatment of
individuals at private health facilities results in underreporting of cases and deaths
in the state, since private practitioners are not required by law to report cases and
deaths. Reported-incidence and -mortality data for 2003 can be used to obtain esti-
mates of model-dependent underreporting levels (1− p). Moreover, the transmission
coefficients (β in Model I and λh and λv in Model II) are also unknown for this dis-
ease.

Model I can be written as
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S′(t) =μN −βS(t)
I(t)
N

−μS(t),

I′(t) =βS(t)
I(t)
N

− (η +μ)I(t),

G′(t) =pηI(t)− (α1 +μ)G(t),

T ′(t) =(1− p)ηI(t)− (α2 +μ)T (t),
R′(t) =α1G(t)+α2T (t)−μR(t).

The reproduction number for Model I is

RI
c =

β
μ +η

.

Aim 1: Estimate parameter(s) p and β . The incidence-underreporting level is then
given by (1− p)×100%.
Aim 2: Use these estimated parameters to estimate the controlled (since treatment
modifies the infectious period) reproduction number (Rc).

In Model II, the rate of infection for susceptible humans is modeled by Fh(t) =
λh

Z(t)
Nv(t)

with λh ≡ mCβhv. Here, m is the per capita average number of sand flies
(assumed constant), C is the mean rate of bites per sand fly, βhv is the transmission
“probability” per bite from an infectious sand fly, and Z

Nv
is the proportion of infec-

tious sand flies in the vector population. The proportion of bites of susceptible sand
flies on infectious humans is modeled by I

Nh
, that is, sand flies bite the host popu-

lation at random. The infection rate of susceptible sand flies is Fv(t) = λv
I(t)

Nh(t)
with

λv =Cβvh where βvh is the transmission “probability” per infectious human bite by
a susceptible sand fly.

Model II is given by

S′(t) = Λ −λhS(t)
Z(t)
Nv(t)

−μhS(t), X ′(t) = μvNv −λvX(t)
Ih(t)
Nh(t)

−μvX(t),

I′(t) = λhS(t)
Z(t)
Nv(t)

− (δ1 +η +μh)I(t), Z′(t) = λvX(t)
Ih(t)
Nh(t)

−μvZ(t),

G′(t) = pηI(t)− (δ2 +α1 +μh)G(t),

T ′(t) = (1− p)ηI(t)− (δ2 +α2 +μh)T (t),

R′(t) = α1G(t)+α2T (t)−μhR(t),

In Model II, the rate of infection for susceptible humans can be modeled by
Fh(t) = λh

Z(t)
Nv(t)

(see Table 10.12 for definitions) with λh ≡ mCβhv. Here, m is the
per capita average number of sand flies (assumed constant), C is the mean rate of
bites per sand fly, βhv is the transmission “probability” per bite from an infectious
sand fly, and Z

Nv
is the proportion of infectious sand flies in the vector population.

The proportion of bites of susceptible sand flies on infectious humans is modeled
by I

Nh
, that is, sand flies bite the host population at random. The infection rate of

susceptible sand flies is Fv(t) = λv
I(t)

Nh(t)
with λv = Cβvh where βvh is the transmis-
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sion “probability” per infectious human bite by a susceptible sand fly. Even though
we consider a systematic sub-representation of λh and λv, we do not estimate their
underrepresentation parameters. That is, we estimate transmission coefficients λh
and λv as a lumped parameters and do not estimate m, C βhv and βvh explicitly. The
reproduction number for Model II is

RII
c =

√(
λv

μh +δ1 +η

)(
λh

μv

)
.

Estimates of the controlled (since treatment modifies the infectious period) repro-
duction number (Rc) and the proportion of reported cases (p) are generated from
the models. Berkeley Madonna or Matlab (built-in routine lsqcurvefit) curve-fitting
tools can be used to estimate model parameters. As an example, parameters esti-
mates for Model I are shown in Table 10.12. The “best” fit of the model to the cu-
mulative number of reported cases (official data; Table 10.12) using a least squares
fitting procedure is used to generate the unknown parameter estimates. However, for
Model II, multiple data (cases and deaths) can be used to estimate parameters.

Fig. 10.7 Flow chart: Arrows in Model II indicate interactions between vector (sand fly) and host
(human) populations.
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Variable Definition

S Number of human susceptibles
I Number of infected humans
G Number of humans undergoing treatment at public health facilities
G Number of humans undergoing treatment at private health facilities
R Number of recovered individuals
Nh Total population of humans
X Number of susceptible vectors
Z Number of infected vectors
Nv Total vector population size

Table 10.4 Model variables.

Para. Definition Point estimate Ref.

β Transmission coefficient 0.002 /month Estimated
p Proportion of infected 0.24 Estimated

using public health clinics
μ Natural mortality 0.00138 / month Census, 2001
η Treatment per capita rate 0.25 / month Sud et al., 2004
α1 Per capita recovery rate 1.32 / month Mubayi et al., 2010

for G class individuals
α2 Per capita recovery rate 0.65 / month Mubayi et al., 2010

for T class individuals
Λ Human susceptibles recruitment rate 7224 people/month Mubayi et al., 2010
δ1 Disease related mortality in class I (38.5%) Zerpa et al., 2003
δ2 Disease related mortality in treatment (10%) Bora, (1999)

(G and T) classes
μh (μv) Natural mortality per capita rate 0.00138 (2.13) /month Mubayi et al., (2010)

in humans (vectors)
λh (λv) Transmission coefficients 2.1 (1.5) / month Estimated

for humans (vectors)

Table 10.5 Parameters of the models.

In the models, the cumulative reported cases from time t0 to t are given by

C(t) =
∫ t

t0
pηI(τ)dτ ≈C(tk) =

k

∑
n=1

pηIn

where k ∈ {1,2, . . . ,12}, representing 12 months. Corresponding estimates of C(tk)
(i.e., C̃k) can be found from the data given in Table 10.12. Hence, the estimation
problem, for example in the case of Model I, is then to find optimal values (β̂ and
p̂) of β and p such that

(β̂ , p̂) = min
(β ,p)

12

∑
k=1

[C(tk)−C̃k]
2.
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Time Incidence rate VL mortality rate

per 10,000 individuals a per 10,000 infectedb

Jan-03 0.0638 0.0008
Feb-03 0.1022 0.0007
Mar-03 0.1233 0.0031
Apr-03 0.1595 0.0009
May-03 0.1054 0.0020
Jun-03 0.1235 0.0022
Jul-03 0.1585 0.0013
Aug-03 0.2028 0.0034
Sep-03 0.1567 0.0032
Oct-03 0.1460 0.0021
Nov-03 0.1289 0.0009
Dec-03 0.1453 0.0010

Table 10.6 2003 Visceral leishmanias reported data from Indian state of Bihar.

aThis rate is computed by dividing the number of new cases occurring in a particular month by the 2003 population of
Bihar (2003 population of Bihar was 86,396,255) and then multiplying the resultant number by 10,000.
bThis rate is computed by dividing the number of deaths occurring in a particular month by the 2003 population of Bihar
(2003 population of Bihar was 86,396,255), and then multiplying the resultant number by 10,000.

Similarly, if mortality data (D̃k, k ∈ {1,2, . . . ,12}) are to be used then the cumu-
lative number of deaths from the model is given by

D(t) =
∫ t

t0
δ2G(τ)dτ ≈ D(tk) =

k

∑
n=1

δ2Gn.

Assignment:

1. Use Model II and incidence data in Table 10.12 to estimate λh, λv, δ1, and p.
2. Compute underreporting incidence levels and estimate RII

c using model esti-
mates from step (1).

3. Repeat the first two steps using both data sets (i.e., incidence and mortality data
sets in Table 10.12).

References: Bora (1999), Census of India (2001), Desjeux (2004), Mubayi et al
(2010), Murray et al.(2005), Sud (2004), Zerpa (2003).

10.13 Project: Invasive Pneumococcal Disease Surveillance Data

We consider for this example invasive diseases (in contrast to respiratory infec-
tions including the common ear infection) caused by the bacterium Streptococcus
pneumoniae. These most notably include pneumonia, meningitis, and bacteremia. S.
pneumoniae, or the pneumococcus, is commonly part of the normal flora of healthy
individuals, and is spread through casual contacts via respiratory droplets. Colo-
nization of the nasopharyngeal region is asymptomatic and typically reversed in a
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couple of weeks (it lasts longer in older, younger, and other immunocompromised
individuals). A successful infection occurs only in the event that pneumococci are
able to spread to and colonize another part of the body, such as the lungs, ear, or
blood, etc.

While there are some vaccines routinely used against these infections, it is a
lively research area with many open questions. Of the vaccines available, the older
one protect against infection only, leaving the colonization phase unaffected, and
targets the 23 most common of the over 90 serotypes (analogous to strains of a
virus). The somewhat inefficient protection it provides to juvenile and older indi-
viduals is not permanent, and children, one of the most affected groups, are unre-
sponsive to the vaccine. Another vaccine, targeting seven common serotypes, is very
effective against invasive infection, particularly in children, and may provide pro-
tection against colonization. However, whether this aspect of protection is beneficial
is under investigation, since it may also provide selective pressure for previously
uncommon, yet more invasive, serotypes not targeted by the vaccine. A model of
these dynamics was developed in [Sutton, Banks, and Castillo-Chavez (2008)], and
is discussed here. See this paper and references therein for more information on the
epidemiology of these infections and vaccines developed to target them.

A schematic of pneumococcal infection dynamics including vaccination is shown
in Figure 10.8. The model equations are given by

dS
dt

= λ −βS
E +EV + I + IV

N
+αE + γI −φS+ρSV −μS,

dE
dt

= βS
E +EV + I + IV

N
−αE − lκ(t)E −φE +ρEV −μE,

dSV

dt
= φS− εβSV

E +EV + I + IV
N

+αEV + γIV −ρSV −μSV , (10.34)

dEV

dt
= εβSV

E +EV + I + IV
N

−αEV +φE −ρEV −δκ(t)EV −μEV ,

dI
dt

= lκ(t)E − (γ +η +μ)I,

dIV
dt

= δκ(t)EV − (γ +η +μ)IV ,

where the infection rate κ(t) is the oscillatory function κ(t) = κ0{1+κ1 cos[ω(t −
τ)]}.

1. Give interpretations for the parameters φ , ρ , ε , and δ .
The simplified model excluding vaccination is given by
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Fig. 10.8 Pneumococcal infection dynamics with vaccination.

dS
dt

= Λ −βS
E + I

N
+αE + γI − (φ +μ)S,

dE
dt

= βS
E + I

N
− (αE +κ(t)+μ)E, (10.35)

dI
dt

= κ(t)E − (γ +η +μ)I.

2. Show that the reproductive number for the model without vaccination is R0 =
β

α+κ+μ + κ
α+κ+μ

β
γ+η+μ . Give an interpretation.

The total population in the model is not constant, with case fatality rate η > 0,
as is clear by considering the equation dN

dt = λ − μN −η(I + IV ), where N =
S+E + SV +EV + I + IV . But in the absence of infection, the total population
N(t) approaches λ

μ .
3. Rescale the (full) model equations so that the state variables

X(t) = (S(t),E(t),SV (t),EV (t), I(t), IV (t))T

now represent proportions of the total population,

x(t) = (s(t),e(t),sv(t),ev(t), i(t), iv(t))T .

Hint: dx
dt �= 1

N
dX
dt , since N(t) �= N constant.

4. Show that the proportions of population unvaccinated and vaccinated are
ρ+μ

ρ+μ+φ and φ
ρ+μ+φ , respectively.
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Many model parameters are not usually available in typical sources such as
census data, as is usually the case with epidemiological models, and further are
not directly measurable from surveillance data. However, to study prevention
strategies, such as vaccination, in a specific population, we need to know all
parameter values. In [Sutton, Banks, and Castillo-Chavez (2008)], the authors
used surveillance data collected by the Australian government, available at [Na-
tional Notifiable Diseases, Roche et al. (2004), Roche et al. (2006), Roche et
al. (2007], and used a least squares approach to estimate pertinent parameters.
In the simplest case, if one has only one type of observation d j at times t j,
where j ∈ [1, . . . ,n], that is representative of model quantities f (t j), we can ob-
tain estimates to model parameters θ̂ (commonly θ is a vector of all desired
parameters) by minimizing the objective functional

θ̂ = argmin
θ∈Θ

n

∑
j=1

(d j − f (t j))
2 . (10.36)

In the above, Θ is the space of all possible values the model parameters may
take, or the feasible parameter space. For more information on how the surveil-
lance data were handled with the full model including vaccination, see [Sutton,
Banks, and Castillo - Chavez (2008)], and for a discussion of the mathemat-
ical and statistical aspects of parameter estimation and model comparison as
techniques in the field of inverse problems, see [Banks et al. (2009)].

5. Determine the form of f (t j) if the data d j are the number of infections in a pop-
ulation at a given time t j. What is the form of f (t j) if the data d j are reported
as the number of cases reported during a given time interval t j−1 to t j?

Below is a sample Matlab program to estimate parameters θ = (β ,γ)T from
“data” (data were actually generated from a forward solution of the model run
with the true parameters) in which the number of infections during a week is
reported for 14 weeks.
The code below fits the sample case notification data using a basic SIR model

Ṡ =−βSI,

İ = βSI − γI,

Ṙ = γI,

using the initial guess (0.00202,0.0022)T for parameters (β ,γ)T . The data here
are without any noise, or error. That is, these data were calculated from solu-
tions of the above SIR model exactly. Of course, there is always some error
in actual data, since even a very good model is only an approximation of the
epidemiological/physical processes occurring that generate the observations.
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clear all
tic;

data = [2.4788; 8.4667; 27.4354; 75.6336; 140.4773; 137.2901; 71.5112; 25.5687; 7.8727;
2.3170; 0.6729; 0.1954; 0.0567; 0.0165]; % enter data

n = numel(data);
t wndow= (0:n)’; %n+1 time points
IC = [500, 1, 0, 0];

%% setting initial model parameter values and ranges %%%
theta0 = [0.0018; 0.0022];
lb = [0.0005; 0.0005];
ub = [0.01; 0.01];
theta hat = theta0;
%anonymous function to be able to pass additional arguments to the
%objective functional
anonym = @(theta hat,t wndow)obj fcn(theta hat,t wndow,n,IC);

options=optimset(’Display’,’off’,’TolFun’,1e-24,’TolX’,1e-24,’LargeScale’,’on’);

% calculating estimated parameters theta hat
[ theta hat ]= lsqcurvefit(anonym,theta hat,t wndow,data,lb,ub,options);
%model solution with estimated parameters
[t z h]=ode45(@simple SIR,t wndow,IC,[],theta hat);
% calculating new infections as predicted by the ’fitted’ model
% solution with estimated parameters
model = z h(2:n+1,4)-z h(1:n,4);
t data = 1:numel(data);
figure(1);
plot(t data,model,t data,data,’.’)
title(’Model fit to weekly cases reported’)
xlabel(’t (weeks)’)
ylabel(’Cases’)

fprintf(’The estimated parameters are beta = %d and gamma = %d’,theta hat(1),theta hat(2))
function f=simple SIR(t,y,theta)
f=zeros(4,1);
f(1)=-theta(1)∗y(1)∗y(2);
f(2)=theta(1)∗y(1)∗y(2) - theta(2)∗y(2);
f(3)=theta(2)∗y(2); f(4) = theta(1)∗y(1)∗y(2);
function F=obj fcn(p,t,n,IC)
[t,z] =ode45(@simple SIR,t,IC,[],p);
F = zeros(n,1); F(1:n) = z(2:n+1,4)-z(1:n,4);

6. After running the sample code to estimate the parameter values from the “noise-
less” data, use it to estimate the same parameters, starting from the same initial
guess (0.00202,0.0022)T , using the data sets below with an increasing amount
of error (1%, 5%, 10%) in the observations. Interpret your results for the pa-
rameter estimates as the observational error in the data increases. It may be that
one parameter is more reliably estimated from these data than the other. If that
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is the case, suggest what type of data may be more informative for that param-
eter.
Case notification data to be used to estimate parameters using a simple SIR
model, with noise added as denoted in the column headings below:

1% error 5% error 10% error
2.7341 3.0036 3.6188
8.3935 7.0609 9.5840

27.3911 29.0218 24.3466
76.1656 73.5853 75.5263
140.9805 138.5686 139.8885
137.7963 135.8446 139.5319
71.7510 66.2536 75.4156
25.1375 28.1372 29.5304
8.1290 8.4535 4.7884
2.8993 0.9690 2.5933
0.8475 3.1198 0
0.5649 0 0
0.3163 0 0.0322

0 0 5.4901

7. Adapt the sample code to estimate parameters θ = (β ,κ0,κ1)
T with the two

sets of monthly case notifications:

Jan 95 104 Jan 113 169
Feb 93 127 Feb 86 99
Mar 120 77 Mar 85 84
Apr 167 183 Apr 112 125
May 221 227 May 158 154
Jun 267 242 Jun 211 209
Jul 293 284 Jul 258 286

Aug 292 297 Aug 284 311
Sep 291 329 Sep 284 311
Oct 262 329 Oct 257 270
Nov 214 266 Nov 212 189
Dec 160 134 Dec 158 172

Use the full model (including vaccination) for pneumococcal disease dynamics.
The other parameter values and initial conditions needed are given in the table
below.
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α 1.3555 S(0) 16,576,528
ω π

6 E(0) 2,453,326
τ 8 SV (0) 435,002
l 0.05 EV (0) 64,380
γ 1 I(0) 33
η 0.0787 IV (0) 5
λ 25,000
μ 0.0003
φ 0.0007579
ρ 0.02741
ε 0.953
δ 0.53551

8. In 2005, the studied population was prescribed a new vaccine nationally, the
long-term effects of which were not clear at the time. Vaccine companies pub-
lish estimates of the efficacy of released vaccines, but these may vary depending
on the ability of the immunized population to mount a response to them. The
effect of this vaccine on the colonization susceptibility was unclear. Estimate
the vaccine efficacies ε,δ from the data below, assuming unchanged loss of
protection ρ and an increased vaccination rate of φ = 0.007984. Data of type
d1 are monthly reported cases of (total) infections, and type d2 are vaccinated
cases. Use the state variable values from the end (last time point) of the “best
fit” solution to the answer to the previous question as initial conditions.

d1 d1 d2 d2

Jan 68 134 Jan 11 61
Feb 107 119 Feb 24 52
Mar 35 180 Mar 30 101
Apr 159 230 Apr 34 105
May 206 319 May 65 174
Jun 226 437 Jun 79 220
Jul 291 486 Jul 122 259

Aug 326 494 Aug 112 268
Sep 389 441 Sep 114 237
Oct 326 325 Oct 104 209
Nov 169 287 Nov 58 159
Dec 222 233 Dec 88 125

9. The reproductive number for the full model with vaccination Rφ is given by
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Rφ =
β s0(ρ +α +δκ +μ +φ)+ εβ s0

v(ρ +φ +α +κμ)

(φ +α +κ +μ)(ρ +α +δκ +μ)−φρ

+
β s0κ(ρ +α +δκ +μ +δφ)+ εβ s0

v(κρ +δκ(φ +α +κ +μ))
(γ +η +μ)[(φ +α +κ +μ)(ρ +α +δκ +μ)−φρ]

,

(10.37)

where κ ≈ κ0 and s0 and s0
v are the proportions of the population unvaccinated

and vaccinated, respectively, at the disease-free equilibrium. With the vaccine
efficacy parameters just obtained, what can be said about the possibility of
effectively vaccinating this population against IPD with the given vaccines?

References: Banks et al. (2009), National Notifiable Diseases Surveillance Sys-
tem, Roche et al. (2004), Roche et al. (2006), Roche et al. (2007), Sutton, Banks and
Castillo-Chavez (2008).
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