Skip to main content

Controlled Fusion and Reactors of the Tokamak Type

  • Chapter

Part of the book series: Advances in Nuclear Science and Technology ((ACRE,volume 10))

Abstract

Research on fusion reactor problems has increased dramatically as the plasma physics of magnetic confinement continues to make substantial progress. As part of this research several studies (1–6) have been completed on the conceptual design of future fusion reactors. The purpose of these studies is to identify the key technological problems associated with fusion reactors and thereby guide future research. A description of one such conceptual design can be used to serve as an introduction to the broad field of fusion technology, particularly if it is combined with other work that generally surveys the technological aspects of most approaches to fusion power (6,7). In this paper, a detailed description of the UWMAK-III conceptual tokamak reactor design (8) is given and it serves to highlight the important technological areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badger, B., Abdou, M.A., Boom, R. W., Brown, R.G., Chang, T. E., Conn, R.W., Donhowe, J.M., El-Guebaly, L.A., Emmert, G.A., Hopkins, G.R., Houlberg, W.A., Johnson, A.B., Kamperschroer, J.H., Klein, D., Kulcinski, G.L., Loft, R.G., McAlees, D.G., Maynard, C.W., Mense, A.T., Neil, G.R., Norman, E., Sanger, P.A., Stewart, W.E., Sung, T., Sviatoslavsky, I., Sze, D.K., Vogelsang, W.F., Wittenberg, L.J., Yang, T.F., Young, W.D., “UWMAK-I, A Wisconsin Toroidal Fusion Reactor Design”, Nuclear Engineering Department Report FDM-68, The University of Wisconsin, Madison, 1973 (Vol. 1); May 1975 (Vol. 2).

    Google Scholar 

  2. See also, Kulcinski, G.L., Conn, R.W., “Conceptual Design of a 5000 MW(th) D-T Tokamak Reactor”, in Fusion Reactor Design Problems, IAEA, Vienna, 1974, P. 51

    Google Scholar 

  3. Conn, R.W., Kulcinski, G.L., “Technological Implications for Tokamak Fusion Reactors of the UWMAK-I Conceptual Design”, Proceedings First National Topical Conference on the Technology of Controlled Nuclear Fusion, CONF-740402, Vol. I, U.S.A.E.C., Page 56, 1974.

    Google Scholar 

  4. Mills, R.G., Editor, “A Fusion Power Plant”, Princeton Plasma Physics Laboratory Report MATT-1050, Princeton University, August 1974.

    Google Scholar 

  5. “An Engineering Design Study of a Reference Theta-Pinch Reactor (RTPR)”, LA-5336 or ANL-8019, Joint Report by Los Alamos Scientific Laboratory and Argonne National Laboratory, 1974.

    Google Scholar 

  6. Werner, R.W., Carlson, G.A., Hovingh, J., Lee, J.D., Peterson, M., “Progress Report No. 2 in the Design Considerations for a Low Power Experimental Mirror Fusion Reactor”, Lawrence Livermore Laboratory Report UCRL-7405 4–2, 1974.

    Google Scholar 

  7. Badger, B., Conn, R.W., Kulcinski, G.L., Abdou, M.A., Aronstein, R., Avci, H.I., Boom, R.W., Cheng, E.T., Davis, J., Donhowe, J.M., Emmert, G.A., Eyssa, Y., Ghoniam, N.M., Ghose, S., Houlberg, W., Kesner, J., Lue, W., Maynard, C.W., Mense, A., Mohan, N., Peterson, H.A., Sung, T.Y., Sviatoslavsky, I., Sze, D.K., Vogelsang, W.F., Westerman, R., Wittenberg, L.J., Yang, T.F., Young, J., Young, W.D., “UWMAK-II, A Conceptual Tokamak Power Reactor Design”, Nuclear Engineering Department Report FDM-112, University of Wisconsin, December 1975.

    Google Scholar 

  8. Ribe, F.L., Rev. Mod. Phys., 47,7, 1975. For a general view of worldwide research in fusion reactor design see: Fusion Reactor Design Problems, IAEA, Vienna, 1974; Plasma Physics and Controlled Nuclear Fusion Research 1974, IAEA, Vienna, 1975, Vol. III; Proc. First National Topical Conf. on the Technology of Controlled Nuclear Fusion, CONF-740402, Volumes I and II, U. S. Atomic Energy Commission, 1974.

    Article  Google Scholar 

  9. Steiner, D., Nucl. Sci. Eng., 58, P. 102, 1975.

    Google Scholar 

  10. See also, Nozawa, M., Steiner, D., “An Assessment of the Power Balance in Fusion Reactors,” Oak Ridge National Laboratory Report, ORNL-TM-4421, 1974.

    Google Scholar 

  11. Conn, R.W., Kulcinski, G.L., Maynard, C.W., Aronstein, R., Avci, H.I., Blackfield, D., Boom, R., Bowles, A., Cameron, E., Cheng, E.T., Clemmer, R., Dalhed, S., Davis, J., Emmert, G.A., Ghoniem, N.M., Ghose, S., Gohar, Y., Kesner, J., Kuo, S., Larsen, E., Ramer, E., Scharer, G., Schmunk, R.E., Sung, T.Y., Sviatoslavsky, I., Sze, D.K., Vogelsang, W.F., Yang, T.F., Young, W.D., “UWMAK-III, A High Performance, Noncircular Tokamak Power Reactor Design,” Nuclear Engineering Department Report FDM-150, The university of Wisconsin, 1976.

    Google Scholar 

  12. Mills, R.G., “Catalyzed Deuterium Fusion Reactors,” Princeton Plasma Physics Laboratory Report TM-259, 1971.

    Google Scholar 

  13. Duane, B.H., “Fusion Cross Section Theory”, Battelle Northwest Laboratory Report, BNWL-1685, 1972.

    Google Scholar 

  14. Miley, G.H., Towner, H., Ivich, N., “Fusion Cross-Sections and Reactivities”, Nuclear Engineering Program, Report C00–2218-17, University of Illinois, 1974.

    Google Scholar 

  15. Lawson, J.D., Proceedings Physical Society, B-70, P.6 1957.

    Article  Google Scholar 

  16. Meade, D., Nuclear Fusion 14, P. 289, 1974.

    Article  Google Scholar 

  17. Conn, R.W., Kesner, J., Nuclear Fusion 15, P. 775, 1975.

    Article  Google Scholar 

  18. Post, R.F., Annual Review of Nuclear Science, 20, P. 509, 1970.

    Article  Google Scholar 

  19. Futch, A.H., Jr., Holdren, J.P., Killeen, J., Mirin, A. A., Plasma Physics, 14, P. 211, 1972.

    Google Scholar 

  20. Plasma Physics and Controlled Nuclear Fusion Research 1974, Fifth Conference Proceedings, Tokyo, IAEA, Vienna. 1975. See papers by D. E. Baldwin et al., Vol. I, P. 301, and M. E. Rensink et al., Vol. I, P. 311.

    Google Scholar 

  21. Gott, Yu.B., Ioffe, M.S., Telkovsky, V.C., Nuclear Fusion Supplement 3, P. 1045, 1962.

    Google Scholar 

  22. Ibid Ref. 17, paper by Coensgin, F.H., Cummins, F.W., Molvik, A.W., Nexsen, W.E., Simonen, T.C., Stallard, B.W., Vol. II, P. 323.

    Google Scholar 

  23. Post, R.F., Rosenbluth, M.N., Phys. Fluids, 9, P. 730, 1966.

    Article  Google Scholar 

  24. Plasma Physics and Controlled Nuclear Fusion Research, Proceedings Fourth Conference, Madison, Wisconsin (IAEA, Vienna, 1971). See D.E. Baldwin et al., Vol. II, P. 735.

    Google Scholar 

  25. Molvik, A.W., Coensgen, F.H., Cummins, W.F., Nexsen, W.E., Simonen, T.C., Phys. Rev. Letts., 32, P. 1109, 1974.

    Article  Google Scholar 

  26. Logan, B.G., “Two Component Experiments in 2XIIB”, Lawrence Livermore Laboratory Report, UCID-16851, 1975.

    Google Scholar 

  27. Coensgen, F.H., et al., “Startup of a Neutral-Beam-Sustained Plasma in a Quasi-DC Magnetic Field”, Lawrence Livermore Laboratory Report, UCRL-78057, 1976.

    Google Scholar 

  28. Ibid, Ref. 21, paper by Burnett, S.C., et al., Vol. III, P. 201.

    Google Scholar 

  29. Ibid, Ref. 17, Paper by Cantrell, E.L. et al., Vol. III, P. 13.

    Google Scholar 

  30. Artsimovich, L.A., Nuclear Fusion 12, P. 215, 1972.

    Article  Google Scholar 

  31. Furth, H.P., Nuclear Fusion 15, P. 487, 1975.

    Article  Google Scholar 

  32. Spitzer, L., Physics of Fully Ionized Gasses, J. Wiley, New York, Second Edition, 1962.

    Google Scholar 

  33. Gorbunov, E.P., et al., “Controlled Fusion and Plasma Physics,”Proceedings 6th European Conference, Moscow, Vol. I., P. 1, 1973.

    Google Scholar 

  34. Ibid Ref. 19, D. Dimock et al., Vol. 1, P. 451.

    Google Scholar 

  35. Ibid Ref. 17, Equipe TFR, Vol. I, P.P. 127 and 135.

    Google Scholar 

  36. Bol, K., et al., Phys. Rev. Letts., 29, P. 495, 1972.

    Article  Google Scholar 

  37. Ibid Ref. 17, Paper by Bol, K., et al., Vol. I, P. 83; also, Bol, K., et al., Phys., Rev. Letts., 32, P. 661, 1974.

    Google Scholar 

  38. Berry, L.A., Bulletin American Physical Society 20, P. 1332, 1975.

    Google Scholar 

  39. Dei Cas, R., TFR Group, Bulletin American Physical Society, 20, P. 1332, 1975.

    Google Scholar 

  40. Galeev, A.A., Sagdeer, R.Z., Soviet Physics JETP 32, P. 572, 1971.

    Google Scholar 

  41. Bickerton, R.J., Conner, J.W., Taylor, J.B., Nature, Phys. Science 229, P. 110, 1972.

    Google Scholar 

  42. Ibid Ref. 17, Meade, D.M., Furth, H.P., Rutherford, P.H., Seidl, F., Duchs, D.F., Vol. I, P. 605.

    Google Scholar 

  43. Ohkawa, T., Voorhies, H.G., Phys. Rev. Letts., 22, P. 1275, 1969

    Article  Google Scholar 

  44. see also Ohkawa, T., Jensen, T.H., Plasma Physics 12, P. 789, 1970.

    Article  Google Scholar 

  45. Ibid Ref. 17, Ohkawa, T., et al., Vol. I, P. 281.

    Google Scholar 

  46. Rosenbluth, M.N., Hazeltine, R.D., Hinton, F.L., Phys. Fluids, 15, P. 116, 1972.

    Article  Google Scholar 

  47. Pfrisch, D., Schlüter, A., Max Planck Institute Report, MPI/PA/7/62, 1962.

    Google Scholar 

  48. Hinton, F.L., Rosenbluth, M.N., Phys. Fluids 16, P. 836, 1973.

    Article  Google Scholar 

  49. Galeev, A.A., Sagdeev, R.Z., Zh. Eksp. Theo. Fiz. 53, P. 348, 1967

    Google Scholar 

  50. Galeev, A.A., Sagdeev, R.Z., Soviet Phys. Dokl. 14, P.1198, 1970

    Google Scholar 

  51. Galeev, A.A., Sagdeev, R.Z., Sov. Phys. JETP 32, P. 572, 1971.

    Google Scholar 

  52. Berry, L.A., Clarke, J.F., Hogan, J.T., Phys. Rev. Letts., 32, P. 362, 1974.

    Article  Google Scholar 

  53. Yoshikawa, S., Phys. Rev. Letts., 25, P. 353, 1970

    Article  Google Scholar 

  54. also ibid Ref. 17, Yoshikawa, S., Christofilos, N., Vol. II, P. 357.

    Google Scholar 

  55. Artsimovich, L.A., J.E.T.P. Letters 13, P. 70, 1971.

    Google Scholar 

  56. Hazeltine, R.D., Hinton, F.L., Rosenbluth, M.N., Phys. Fluids 16, P. 1645, 1973.

    Article  Google Scholar 

  57. Kadomtsev, B.B., Pogutse, O.P., Zh. Ex. sp. Teor. Fi. 51, P. 1734, 1966

    Google Scholar 

  58. Kadomtsev, B.B., Pogutse, O.P., Sov. Phys. J.E.T.P. 24, P. 1172, 1967.

    Google Scholar 

  59. Kadomtsev, B.B., Pogutse, O.P., Soviet Phys. Dokl. 14, P. 470, 1969.

    Google Scholar 

  60. Kadomtsev, B.B., Pogutse, O.P., Nuclear Fusion 11, P. 67, 1971.

    Article  Google Scholar 

  61. Ibid Ref. 17, Horton, W., et al., Vol. I, P. 541, and Coppi, B., Pozzolo, R., Rewoldt, G., Schep, T., Vol. I, P. 549.

    Google Scholar 

  62. Spano, A.H. (Compiler), Nuclear Fusion 15, P. 909, 1975.

    Article  Google Scholar 

  63. Ibid Ref. 17, Behrisch, R., Kadomtsev, B.B., Vol. II, P. 229.

    Google Scholar 

  64. Conn, R.W., Kulcinski, G.L., Avci, H., Magraby, M. El, Nuclear Technology 26, P. 125, 1975.

    Google Scholar 

  65. Segal, H., Richards, T.G., “Low Temperature Resistance Studies on Cyclically Strained Aluminum”, in Advances in Cryogenic Engineering, P. 21, in press.

    Google Scholar 

  66. Yang, T., Conn, R.W., Bulletin American Phys. Society 20, P. 1280, 1975

    Google Scholar 

  67. Yang, T., Conn, R.W., “MHD Equilibrium and Stability Calculations for a Noncircular Highβ θ Tokamak Plasma”, Nuclear Engineering Department Report, UWFDM-152, University of Wisconsin, 1975.

    Google Scholar 

  68. Ibid Ref. 17, Chance, M.S., 3t al., Vol. I, P. 463.

    Google Scholar 

  69. Scharer, J., Conn, R.W., Blackfield, D., “Study of RF and Neutral Beam Heating in Tokamaks”, Electric Power Research Institute Report, EPRI ER-268, 1976.

    Google Scholar 

  70. Ibid Ref. 17, Adam, J. et al., Vol. I, P. 65.

    Google Scholar 

  71. Hogan, J.T., Meth. in Comp. Physics 16, 1976

    Google Scholar 

  72. Hogan, J.T., Oak Ridge National Laboratory Report, ORNL-TM-5153, 1975.

    Google Scholar 

  73. Kesner, J., Conn, R.W., Nuclear Fusion, 16, P. 397, 1976.

    Article  Google Scholar 

  74. Kulcinski, G.L., Conn, R.W., Lang, G., Nuclear Fusion 15, P. 327, 1975.

    Article  Google Scholar 

  75. Mense, A.T., “Poloidal Diverters for Tokamak Reactors”, Ph.D. Thesis, University of Wisconsin, 1977.

    Google Scholar 

  76. Mense, A.T., Emmert, G.A., Callen, J.D., Nuclear Fusion 15, P. 703, 1975.

    Article  Google Scholar 

  77. Boom, R.W., Moses, R.W., Jr., Young, W.C., “Magnet Design of Toroidal Field Coils for the UWMAK-II and III Tokamak Systems,” Nuclear Eng. and Design, 39, P. 99, 1976.

    Article  Google Scholar 

  78. Moses, R., Young, W., “Analytic Expressions for Magnetic Forces on Sectored Toroidal Coils”, 6th Symposium on Engineering Problems of Fusion Research, Paper D-3–4, November 1975

    Google Scholar 

  79. Moses, R., Young, W., Nuclear Engineering Department Report UWFDM-143, University of Wisconsin, 1975.

    Google Scholar 

  80. Cornish, D., Lawrence Livermore Laboratory, private communication.

    Google Scholar 

  81. Engle, W. Jr., “A User’s Manual for ANISN”, Oak Ridge Gaseous Diffusion Plant Report, K-1693, 1967.

    Google Scholar 

  82. Mynatt, F.R., et al., “The DOT-III Two-Dimensional Discrete Ordinates Transport Code”, Oak Ridge National Laboratory Report, ORNL-TM-4280, 1973.

    Google Scholar 

  83. Bell, G.E., Glasstone, S., Nuclear Reactor Theory, Van Nostrand-Reinhold, New York, 1970.

    Google Scholar 

  84. Abdou, M.A., Conn, R.W., Nuclear Science and Engineering, 55, P. 226, 1974.

    Google Scholar 

  85. Gohar, Y., University of Wisconsin, private communication.

    Google Scholar 

  86. Conn, R.W., Gohar, Y., Maynard, C.W., Trans. American Nuclear Society, 22, P. 16, 1976.

    Google Scholar 

  87. Chapin, D.L., Price, W., Jr., Trans. American Nuclear Society 21, P. 66, 1975.

    Google Scholar 

  88. Hoffman, M.A., and Carlson, G.A., “Calculation Techniques for Estimating the Pressure Losses for Conducting Fluid Flows in Magnetic Fields”, Lawrence Livermore Laboratory Report UCRL-51010, 1971.

    Google Scholar 

  89. Sze, D.K., Stewart, W.E., “Lithium Cooling for a Low-β Tokamak Reactor”, Proceedings, 1972 Symposium on the Technology of Controlled Thermonuclear Fusion Experiments and Engineering Aspects of Fusion Reactor, CONF-721111, AEC Symposium Series No. 31, USAEC, 1974.

    Google Scholar 

  90. Sze, D.K., Ibid Ref. 8, Chapter VI.

    Google Scholar 

  91. Clemmer, R.G., Larson, E.M., Wittenberg, L.W., “Tritium Handling, Breeding and Containment in Two Conceptual Fusion Reactor Designs: UWMAK-I and UWMAK-II,” Nuclear Engineering and Design, 39, P. 85, 1976; also Ref. 8, Chapter XII.

    Article  Google Scholar 

  92. Wilkes, W.R., Trans. American Nuclear Society, 19, P. 20, 1974.

    Google Scholar 

  93. Watson, J.S., “An Evaluation of Methods for Recovering Tritium from Blanket or Cooling Systems of Fusion Reactors”, Oak Ridge National Laboratory Report ORNL-TM-3794, 1972.

    Book  Google Scholar 

  94. Barrer, R.M., Diffusion In and Through Solids, Cambridge University Press, P. 168, 1941.

    Google Scholar 

  95. Vogelsang, W.F., Kulcinski, G.L., Lott, R.G., Sung, T.Y., Nuclear Technology 22, P. 379, 1974.

    Google Scholar 

  96. Conn, R.W., Sung, T.Y., Abdou, M.A., Nuclear Technology 26, P. 391, 1975.

    Google Scholar 

  97. Kulcinski, G.L., Davis, J., Schmunk, R.E., “The Case for Molybdenum Alloys in D-T Fusion Reactors”, Nuclear Engineering Department Report UWFDM-142, The University of Wisconsin, 1975.

    Google Scholar 

  98. Bianchi, L.M., et al., Universal Cyclops Corporation Report (available from National Technical Information Service (NTIS)), Report No. AD-458529, 1964.

    Google Scholar 

  99. Davis, J.W., McDonnell-Douglas Astronautics-East, St. Louis, Missouri, private communication.

    Google Scholar 

  100. Cheng, E.T., Conn R.W., Trans. American Nuclear Society, 22, P. 44, 1975.

    Google Scholar 

  101. Gill, W.W., et al., AIChE 6, P. 139, 1960.

    Article  Google Scholar 

  102. Schmunk, D., Kulcinski, G.L., “Survey of Irradiation Data on Molybdenum”, University of Wisconsin Report UWFDM-161, September 1976.

    Google Scholar 

  103. Gray, W.J., Morgan, W.C., “High Temperature Graphite Irradiations: 550 to 1450°C”, Battelle Pacific Northwest Laboratories Report, BNWL-1672, 1972.

    Google Scholar 

  104. Van den Berg, M., Everett, M.R., Kingsbury, A., “The Relationship Between Irradiation Temperature and Dimensional Changes of Nuclear Graphites”, 12th Biennial Conference on Carbon, University of Pittsburg, PP 307–310, 1975.

    Google Scholar 

  105. Morgan, W.C., Woodruff, E.M., Gray, W.J., “Irradiation Behavior of Graphite at Very High Temperature”, in 2nd National Topical Conference on Controlled Fusion Technology, Richland, Washington, September, 1976, to be published.

    Google Scholar 

  106. Holt, J.B., Hosmer, D.W., Guinan, M.W., Condit, R.H., Borg, R.J., “Helium Generation and Diffusion in Graphite”, in 2nd National Topical Conference on Controlled Fusion Technology, Richland, Washington, September, 1976, to be published.

    Google Scholar 

  107. McCracken, G.M., Rep. Prog. Phys. 38, P. 241, 1975.

    Article  Google Scholar 

  108. Erents, S.K., Braganza, C.M., McCracken, G.M., “Methane Formation During the Interaction of Energetic Protons and Deuterons with Carbon”, Journal Nuclear Material, in press.

    Google Scholar 

  109. Balooch, M., Olander, D.R., Journal Chem. Phys. 63, P. 4772, 1975.

    Article  Google Scholar 

  110. Lang, G., Holmes, V.L., Nuclear Fusion 16, P. 162, 1976.

    Article  Google Scholar 

  111. Conn, R.W., Kuo, S., “An Advanced Conceptual Tokamak Fusion Reactor Utilizing Closed Cycle Helium Gas Turbines,” Nuclear Engineering and Design, 39, P. 45, 1976.

    Article  Google Scholar 

  112. Bechtel Corporation Scientific Development, “Balance of Plant and Cost Study for the Conceptual Fusion Reactor Design, UWMAK-III”, Bechtel Corporation Report to the University of Wisconsin, February 1976.

    Google Scholar 

  113. Cameron, E., University of Wisconsin, Department of Geology, private communication; also, Ref. 8, Chapter XII.

    Google Scholar 

  114. Vine, J.D., Trans. American Nuclear Society 23, P. 55, 1975.

    Google Scholar 

  115. Bowles, A., Von Fischer, E., Bechtel Corporation, Scientific Development, and Conn, R.W., Sviatoslavsky, I., The University of Wisconsin; extensive details reported in Chapter XIII, Ref. 8, and in Ref. 101.

    Google Scholar 

  116. United Engineers and Contractors, “Pressurized Water Reactor Plant, 1000 MW Central Station Power Plants-Investment Cost Study”, AEC Report WASH-1230, Vol. I, 1971.

    Google Scholar 

  117. Levenson, M., Murphy, P.M., Zaleski, C.P.L., Nuclear News 19, P. 54, 1976.

    Google Scholar 

  118. Sze, D.K., Larsen, E.M., Cheng, E.T., Clemmer, R.G., Trans. American Nuclear Society 22, P. 21, 1975.

    Google Scholar 

  119. Kulcinski, G.L., Brown, R.G., Lott, R.G., Sanger, P.A., Nuclear Technology 22, P. 20, 1974.

    Google Scholar 

  120. Bloom, E.E., Wiffen, F.W., Moziasz, P.J., Stiegler, J.O., “Temperature and Fluence Limits for a Type 316 Stainless Steel CTR First Wall,” Nuclear Technology, 31, P. 115, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Conn, R.W. (1977). Controlled Fusion and Reactors of the Tokamak Type. In: Henley, E.J., Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9913-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9913-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9915-5

  • Online ISBN: 978-1-4613-9913-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics