Skip to main content

Numerical Analysis of Reservoir Fluid Flow

  • Chapter
Multiphase Flow in Porous Media

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 34))

Abstract

In this chapter we shall consider several model problems of varying complexity in petroleum reservoir fluid flow. Although the physical assumptions behind these models are very restrictive, these models contain many qualitative aspects in common with more realistic fluid models. As a result, an understanding of the simple models will be essential to our work in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. T. Barkve, “Solution of a Non-Strictly Hyperbolic System Modelling Non-Isothermal Two-Phase Flow in a Porous Medium,” Report no. 83, Department of Applied Mathematics, University of Bergen, April, 1987.

    Google Scholar 

  2. J. B. Bell, J. A. Trangenstein, and G. R. Shubin, “Conservation Laws of Mixed Type Describing Three-Phase Flow in Porous Media,” SIAM Journal on Applied Mathematics, To appear.

    Google Scholar 

  3. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, 1960.

    Google Scholar 

  4. F. F. Craig, Jr., The Reservoir Engineering Aspects of WaterJlooding, Society of Petroleum Engineers of AIME, 1971.

    Google Scholar 

  5. F. J. Fayers and J. D. Matthews, “Evaluation of Normalized Stone’s Methods for Estimating Three-Phase Relative Permeabilities,” Society of Petroleum Engineers Journal, vol. 24, pp. 225–232, April, 1984.

    Google Scholar 

  6. F. G. Helfferich and G. Klein, Multicomponent Chromatography, Marcel Dekker, 1970.

    Google Scholar 

  7. H. Holden, “On the Riemann Problem for a Prototype of a Mixed Type Conservation Law,” N.Y.U. preprint, 1986.

    Google Scholar 

  8. E. L. Isaacson, D. Marchesin, B. Plohr, and B. Temple, “Classification of Solutions of Riemann Problems for Nonstrictly Hyperbolic Conservation Laws. I, II, III,” MRC Reports.

    Google Scholar 

  9. E. L. Isaacson, “Global Solution of the Riemann Problem for a Non-Strictly Hyperbolic System of Conservation Laws Arising in Enhanced Oil Recovery,” Journal of Computation Physics, to be revised.

    Google Scholar 

  10. T. Johansen and R. Winther, The Solution of the Riemann Problem for a Hyperbolic System of Conservation Laws Modelling Polymer Flooding, Institute for Energy Technology, Kjeller, Norway, 1986.

    Google Scholar 

  11. B.L. Keyfitz and H.C. Kranzer, “A System of Non-Strictly Hyperbolic Conservation Laws Arising in Elasticity Theory,” Archive for Rational Mechanics and Analysis, vol. 72, pp. 220–241, 1980.

    Article  Google Scholar 

  12. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conference Series in Applied Mathematics, 1973.

    Google Scholar 

  13. T.P. Liu, “The Riemann Problem for General 2 x 2 Conservation Laws,” Transactions of the American Mathematical Society, vol. 199, pp. 89–112, 1974.

    Google Scholar 

  14. T.P. Liu, “The Riemann Problem for General Systems of Conservation Laws,” Journal of Differential Equations, vol. 18, pp. 218–234, May 1975.

    Article  Google Scholar 

  15. O. A. Oleinik, “On the Uniqueness of the generalized solution of Cauchy Problem for Nonlinear System of Equations Occurring in Mechanics,” Uspekhi Mat. Nauk. (N.S.), vol. 12, no. 3 (75), pp. 3–73, 1957.

    Google Scholar 

  16. G. A. Pope, “The Application of Fractional Flow Theory to Enhanced Oil Recovery,” Society of Petroleum Engineers Journal, vol. 20, pp. 191–205, 1980.

    Article  Google Scholar 

  17. D. G. Schaeffer, M. Shearer, D. Marchesin, and P. Paes-Leme, “Solution of the Riemann Problem for a Prototype 2 x 2 System of Non-Strictly Hyperbolic Conservation Laws,” Archive for Rational Mechanics and Analysis, To appear.

    Google Scholar 

  18. D. G. Schaeffer and M. Shearer, “Riemann Problems for Nonstrictly Hyperbolic 2 x 2 Systems of Conservation Laws,” Transactions of the American Mathematical Society, To appear.

    Google Scholar 

  19. D. G. Schaeffer and M. Shearer, “The Classification of 2x2 Systems of Non-Strictly Hyperbolic Conservation Laws, With Application to Oil Recovery (appendix with D. Marchesin and P. Paes-Leme),” Communications in Pure and Applied Mathematics, To appear.

    Google Scholar 

  20. M. Shearer, “Loss of Strict Hyperbolicity of the Buckley-Leverett System for Three Phase Flow in a Porous Medium,” Porceedings of IMA Workshop on Numerical Oil Reservoir Simulation (ed. M. Wheeler), To appear.

    Google Scholar 

  21. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1983.

    Google Scholar 

  22. J. A. Smoller and J. L. Johnson, “Global Solutions for an Extended Class of Hyperbolic Systems of Conservation Laws,” Archive for Rational Mechanics and Analysis, vol. 32, pp. 169–189.

    Google Scholar 

  23. H. L. Stone, “Probability Model for Estimating Three-Phase Relative Permeability,” Journal of Petroleum Technology, pp. 214–218, February, 1970.

    Google Scholar 

  24. B. Wendroff, “The Riemann Problem for Materials with Nonconvex Equations of State I: Isentropic Flow,” Journal for Mathematical Analysis and its Applications, vol. 38, pp. 454–466, 1972.

    Article  Google Scholar 

  25. SPE Reprint Series, No. 15: Phase Behavior, Society of Petroleum Engineers, Dallas, Tx., 1981.

    Google Scholar 

  26. G. Acs, S. Doleschall, and E. Farkas, “General Purpose Compositional Model (SPE 10515),” in Sixth SPE Symposium on Reservoir Simulation, pp. 385–404, New Orleans, La., Feb. 1982.

    Google Scholar 

  27. K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science, 1979.

    Google Scholar 

  28. J. B. Bell, G. R. Shubin, and J. A. Trangenstein, “A Method for Reducing Numerical Dispersion in Two-Phase Black-Oil Reservoir Simulation,” Journal of Computational Physics, To appear.

    Google Scholar 

  29. F. G. Helfferich, “Theory of Multicomponent Multiphase Displacement in Porous Media,” SPE J., vol. 21, pp. 51–62, 1981.

    Google Scholar 

  30. T. Johansen and R. Winther, “The Solution of the Riemann Problem for a Ilyperbolic System of Conservation Laws Modelling Polymer Flooding,” Preprint, Institute for Energy Technology, P.O. Box 40, 2007 Kjeller, Norway.

    Google Scholar 

  31. R.P. Kendall, G.O. Morrell, D.W. Peaceman, W.J. Silliman, and J.W. Watts, “Development of a Multiple Application Reservoir Simulator for Use on a Vector Computer,” SPE Paper 11483, Manama, Bahrain, March, 1983.

    Google Scholar 

  32. R. G. Larson, H. T. Davis, and L. E. Scriven, “Elementary Mechanisms of Oil Recovery by Chemical Methods,” SPE J., vol. 22, pp. 243–258, 1982.

    Google Scholar 

  33. M. Michelsen, “The Isothermal Flash Problem,” Fluid Phase Equilibria, vol. 9, pp. 1–40, 1982.

    Article  Google Scholar 

  34. D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier Scientific Publishing Company, New York, 1977.

    Google Scholar 

  35. D. Y. Peng and D. B. Robinson, “A New Two-Constant Equation of State, ” I. and E.C. Fund., vol. 15, pp. 59–64, 1976.

    Article  Google Scholar 

  36. A. Spivak and T. N. Dixon, “Simulation of Gas Condensate Reservoirs,” in Third Symposium on Numerical Simulation of Reservoir Performance, Houston, TX, 1973.

    Google Scholar 

  37. J. A. Trangenstein and J. B. Bell, “Mathematical Structure of Compositional Reservoir Simulation,” SIAM J. Appl. Math., submitted January, 1987.

    Google Scholar 

  38. J. A. Trangenstein and J. B. Bell, “Mathematical Structure of Black-Oil Reservoir Simulation,” SIAM J. Appl. Math., submitted January, 1987.

    Google Scholar 

  39. J. A. Trangenstein, “Customized Minimization Techniques for Phase Equilibrium Computations in Reservoir Simulation,” Chem. Eng. Sci., to appear.

    Google Scholar 

  40. J.W. Watts, “A Compositional Formulation of the Pressure and Saturation Equations (SPE 12244),” in Seventh SPE Symposium on Reservoir Simulation, pp. 113–122, San Francisco, Ca., Nov. 1983.

    Google Scholar 

  41. K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science, 1979.

    Google Scholar 

  42. J. B. Bell, C. N. Dawson, and G. R. Shubin, “An Unsplit, Higher-Order Godunov Method for Scalar Conservation Laws in Multiple Dimensions,” J. Comp. Phys.. to appear

    Google Scholar 

  43. J. B. Bell and G. R. Shubin, “Higher-Order Godunov Methods for Reducing Numerical Dispersion in Reservoir Simulation,” in Eighth SPE Symposium on Reservoir Simulation, pp. 179–190, Dallas, Texas, Feb. 1985.

    Google Scholar 

  44. J. B. Bell, G. R. Shubin, and J. A. Trangenstein, “A Method for Reducing Numerical Dispersion in Two-Phase Black-Oil Reservoir Simulation,” J. Comp. Phys., vol. 65, pp. 71–106, 1986.

    Article  Google Scholar 

  45. J. B. Bell, P. Colella, and J. A. Trangenstein, “Higher-Order Godunov Method for General Systems of Hyperbolic Conservation Laws,” J. Comp. Phys., submitted July, 1987.

    Google Scholar 

  46. M. J. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” J. Comp. Phys., vol. 53, pp. 484–512, 1984.

    Article  Google Scholar 

  47. J. P. Boris and D. L. Book, “Flux Corrected Transport I: SHASTA, a Fluid Transport Algorithm That Works,” J. Comp. Phys., vol. 11, pp. 38–69, 1973.

    Article  Google Scholar 

  48. G. Chavent, G. Cohen, and J. Jaffre, “Discontinuous Upwinding and Mixed Finite Elements for Two-Phase Flows in Reservoir Simulation,” Computer Methods in Applied Mechanics and Engineering, vol. 47, pp. 93–118, 1984.

    Article  Google Scholar 

  49. M. A. Christie and D. J. Bond, “Multidimensional Flux-Corrected Transport for Reservoir Simulation,” in Eighth SPE Symposium on Reservoir Simulation, pp. 81–90, Dallas, Texas, Feb. 1985.

    Google Scholar 

  50. P. Colella, “Glimm’s Method for Gas Dynamics,” SIAM J. Sci. Stat. Comput., vol. 3, pp. 76–110, 1982.

    Article  Google Scholar 

  51. P. Colella and P. R. Woodward, “The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations,” J. Comp. Phys., vol. 54, pp. 174–201, 1984.

    Article  Google Scholar 

  52. P. Colella, “Multidimensional Upwind Methods for Hyperbolic Conservation Laws,” LBL-17023, Lawrence Berkeley Laboratory, May, 1984.

    Google Scholar 

  53. P. Colella, “A Direct Eulerian MUSCL Scheme for Gas Dynamics,” SIAM J. Sci. Stat. Comput., vol. 6, pp. 104–117, 1985.

    Article  Google Scholar 

  54. R. Courant, K. O. Friedrichs, and H. Lewy, “Uber die partiellen Differenzengleichungen der mathematischen Physik,” Math. Anal., vol. 100, pp. 32–74, 1928.

    Article  Google Scholar 

  55. M. Crandall and A. Majda, “Monotone Difference Approximations for Scalar Conservation Laws,” Math. Comp., vol. 34, pp. 1–22, 1980.

    Article  Google Scholar 

  56. J. C. Diaz, W. R. Jines, and T. Steihaug, “On a Convergence Criterion for Linear (Inner) Iterative Solvers for Reservoir Simulation,” in Eighth SPE Symposium on Reservoir Simulation, pp. 41–48, Dallas, Texas, Feb. 1985.

    Google Scholar 

  57. R. J. Diperna, “Convergence of Approximate Solutions to Conservation Laws,” Arch. Rat. Mech. Anal., vol. 82, pp. 27–70, 1983.

    Article  Google Scholar 

  58. J. Douglas and T. Dupont, “Galerkin Methods for Parabolic Problems,” SIAM J. Numer. Anal., vol. 7, pp. 575–626, 1970.

    Article  Google Scholar 

  59. B. Engquist and S. Osher, “Stable and Entropy Satisfying Approximations for Transonic Flow Calculations,” Math. Comp., vol. 34, pp. 45–75, 1980.

    Article  Google Scholar 

  60. K. Eriksson and C. Johnson, “Error Estimates and Automatic Time Step Control for Nonlinear Parabolic Problems, I,” SIAM J. Numer Anal., vol. 24, pp. 12–23, 1987.

    Article  Google Scholar 

  61. R. E. Ewing and R. F. Heinemann, “Incorporation of Mixed Finite Element Methods in Compositional Simulation for Reduction of Numerical Dispersion,” in Seventh SPE Symposium on Reservoir Simulation, pp. 341–348, San Francisco, Ca., Nov. 1983.

    Google Scholar 

  62. R. E. Ewing, T. F. Russell, and M. F. Wheeler, “Simulation of Miscible Displacement Using Mixed Methods and a Modified Method of Characteristics,” in Seventh SPE Symposium on Reservoir Simulation, pp. 71–82, San Francisco, Ca., Nov. 1983.

    Google Scholar 

  63. P. A. Forsythe and P. H. Sammon, “Quadratic Convergence for Cell Centered Grids,” Applied Numerical Mathematics. to appear

    Google Scholar 

  64. B. A. Fryxell, P. R. Woodward, P. Colella, and K.-H. Winkler, “An Implicit-Explicit Hybrid Method for Langrangian Hydrodynamics,” J. Comp. Phys., vol. 63, pp. 283–310, 1986.

    Article  Google Scholar 

  65. J. Glimm, B. Lindquist, O. McBryan, B. Plohr, and S. Yaniv, “Front Tracking for Petroleum Reservoir Simulation,” in Seventh SPE Symposium on Reservoir Simulation, pp. 41–50, San Francisco, Ca., Nov. 1983.

    Google Scholar 

  66. S. K. Godunov, “A Finite Difference Method for the Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics,” Mat. Sb., vol. 47, pp. 271–290, 1959.

    Google Scholar 

  67. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, “Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III,” J. Comp. Phys.. to appear

    Google Scholar 

  68. A. Harten, P. D. Lax, and B. van Leer, “On Upstream Differencing and Godunov-type Schemes for Hyperbolic Conservation Laws,” SIAM Rev., vol. 25, pp. 35–67, 1983.

    Article  Google Scholar 

  69. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comp. Phys., vol. 49, pp. 357–393, 1983.

    Article  Google Scholar 

  70. A. Harten, “On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes,” SIAM J. Numer. Anal., vol. 21, pp. 1–23, 1984.

    Article  Google Scholar 

  71. B. van Leer, “Towards the Ultimate Conservative Difference Scheme, II. Mono-tonicity and Conservation Combined in a Second Order Scheme,” J. Comp. Phys., vol. 14, pp. 361–376, 1974.

    Article  Google Scholar 

  72. B. van Leer, “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’s Method,” J. Comp. Phys., vol. 32, pp. 101136, 1979.

    Google Scholar 

  73. B. van Leer, “Multidimensional Explicit Difference Schemes for Hyperbolic Conservation Laws,” Computing Methods in Applied Sciences and Engineering, VI, pp. 493–499, Elsevier Science Publishers, 1984.

    Google Scholar 

  74. T. A. Manteuffel and A. B. White, “The Numerical Solution of Second-Order Boundary Value Problems on Non-Uniform Meshes,” Math. Comp., vol. 47, pp. 511–536, 1986.

    Article  Google Scholar 

  75. E. M. Murman, “Analysis of Embedded Shock Waves Calculated by Relaxation Methods,” AIAA J., vol. 12, pp. 626–633, 1974.

    Article  Google Scholar 

  76. S. Osher and F. Solomon, “Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws,” Math. Comp., vol. 38, pp. 339–374, 1982.

    Article  Google Scholar 

  77. S. Osher, “Riemann Solver, the Entropy Condition, and Difference Approximations,” SIAM J. Numer. Anal., vol. 21, pp. 217–235, 1984.

    Article  Google Scholar 

  78. S. Osher, “Convergence of Generalized MUSCL Schemes,” SIAM J. Numer. Anal., vol. 22, pp. 947–961, 1985.

    Article  Google Scholar 

  79. P. A. Raviart and J. M. Thomas, “A Mixed Finite Element Method for 2nd Order Elliptic Problems,” in Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, Springer-Verlag, 1977.

    Google Scholar 

  80. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, Interscience, New York, 1977.

    Google Scholar 

  81. T. F. Russell and M. F. Wheeler, “Finite Element and Finite Difference Methods for Continuous Flows in Porous Media,” in The Mathematics of Reservoir Simulation, ed. R. E. Ewing, SIAM, 1983.

    Google Scholar 

  82. P. H. Sammon, “An Analysis of Upstream Differencing,” SPE J.. submitted 1985

    Google Scholar 

  83. P. H. Sammon and B. Rubin, “Practical Control of Timestep Selection in Thermal Simulation,” in Seventh SPE Symposium on Reservoir Simulation, pp. 349–360, San Francisco, Ca., Nov. 1983.

    Google Scholar 

  84. R. Sanders, “A Third Order Accurate Variation Nonexpansive Difference Scheme for Single Nonlinear Conservation Laws,” Univ. Houston Research Report UH/MD-7, March, 1987.

    Google Scholar 

  85. J. A. Sethian, A. J. Chorin, and P. Concus, “Numerical Solution of the BuckleyLeverett Equations,” in Seventh SPE Symposium on Reservoir Simulation, pp. 197–204, San Francisco, Ca., Nov. 1983.

    Google Scholar 

  86. G. R. Shubin and J. B. Bell, “An Analysis of the Grid Orientation Effect in Numerical Simulation of Miscible Displacement,” Computer Methods in Applied Mechanics and Engineering, vol. 47, pp. 47–71, 1984.

    Article  Google Scholar 

  87. G. Strang, “On the Construction and Comparison of Difference Schemes,” SIAM J. Numer. Anal., vol. 15, pp. 506–517, 1968.

    Article  Google Scholar 

  88. M. R. Todd, P. M. O’Dell, and G. J. Hirasaki, “Methods for Increased Accuracy in Numerical Reservoir Simulators,” Trans. SPE of AIME, vol. 253, pp. 515–530, 1972.

    Google Scholar 

  89. J. A. Trangenstein and J. B. Bell, “Mathematical Structure of Black-Oil Reservoir Simulation,” SIAM J. Appl. Math., submitted January, 1987.

    Google Scholar 

  90. J. A. Trangenstein and J. B. Bell, “Mathematical Structure of Compositional Reservoir Simulation,” SIAM J. Appl. Math., submitted January, 1987.

    Google Scholar 

  91. R. F. Warming and B. J.Hyett. J.Hyett, “The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods, ” J. Comp. Phys., vol. 14, pp. 159–179, 1974.

    Article  Google Scholar 

  92. A. Weiser and M. F. Wheeler, “On Convergence of Block-Centered Finite Differences,” Math. Comp.. to appear

    Google Scholar 

  93. S. T. Zalesak, “Fully Multidimensional Flux Corrected Transport Algorithms for Fluids,” J. Comp. Phys., vol. 31, pp. 335–362, 1979.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Trangenstein, J.A. (1988). Numerical Analysis of Reservoir Fluid Flow. In: Multiphase Flow in Porous Media. Lecture Notes in Engineering, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9598-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9598-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96731-8

  • Online ISBN: 978-1-4613-9598-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics