Skip to main content

Studies of Hpd and Radiolabelled Hpd In-Vivo and In-Vitro

  • Chapter
Book cover Methods in Porphyrin Photosensitization

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 193))

Abstract

Successful tumor sterilization by Photodynamic Therapy (PDT) depends on delivery of a light dose appropriate for the concentration of photoactive HPD in the tumor at the time of irradiation. Since the concentration of HPD in target cells or tissues is an important determinant of response to PDT, we have radioactively labelled HPD with the positron emitter Copper-64 to allow non-invasive in-vivo quantitation of HPD concentration by external nuclear detectors. Imaging of HPD distribution is also made possible by Positron Emission Tomography (PET). Labelling with the pure gamma-emitting Copper-67 would permit standard nuclear scintigraphy or Single Photon Emmission Computed Tomography (SPECT) in patients, the longer half-life of 67Cu (58 hours compared to 13 hours for 64Cu) being advantageous in this application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, K.I., Casarett, G.W., Masters, R.E., Noonan, T.R., and Salomon, K., 1948, Hemoglobin synthesis from glycine labelled with radioactive carbon in its α-carbon atom. J. Biol. Chem., 176: 319–325.

    PubMed  CAS  Google Scholar 

  • Andreoni, A., De Silvestri, S., Laporta, P., Jori, G., and Reddi, E., 1982, Hematoporphyrin derivative: experimental evidence for aggregated species, Chem. Phys. Lett., 88: 33–36.

    Article  CAS  Google Scholar 

  • Borsook, H., Graybiel, A., Keighley, G., and Windsor, E., 1954, Polycythemic response in normal adult rats to a nonprotein plasma extract from anemic rabbits, Blood, 9: 734–742.

    PubMed  CAS  Google Scholar 

  • Brown, S.B., and Shillcock, M., 1976, Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution, Biochem. J., 153: 279–284.

    PubMed  CAS  Google Scholar 

  • Christensen, T., Moan, J., Sandquist, T., and Smedshammer, L., 1984, Multicellular spheroids as an in vitro model system for photoradiation therapy in the presence of HPD, in: “Porphyrin Localization and Treatment of Tumors”, D. Doiron, and C. Gomer, eds., Alan R. Liss, Inc., New York: 381–390.

    Google Scholar 

  • Falk, J.E., 1964, “Porphyrins and Metalloporphyrins. Elsevier Publishing”, Amsterdam.

    Google Scholar 

  • Firnau, G., Maass, G., Wilson, B.C., and Jeeves, W.P., 1984, 64Cu labelling of hemataporphyrin derivative for non-invasive in-vivo measurements of tumour uptake, in: “Porphyrin Localization and Treatment of Tumors”, loc cit: 629–636.

    Google Scholar 

  • Gomer, C.J., and Dougherty, T.J., 1979, Determination of 3H- and 14C- hemataporphyrin derivative distribution in malignant and normal tissue, Cancer Res. 39: 146–151.

    PubMed  CAS  Google Scholar 

  • Gomer, C.J., Rucker, N., Mark, C., Benedict, W.F., and Murphree, A.L., 1982, Tissue distribution of 3H-hematoporphyrin derivative in athymic “nude” mice heterotransplanted with human retinoblastoma, Invest. Opthalmol. Vis. Sci., 22: 118–120.

    CAS  Google Scholar 

  • Labbe, R.F., and Nishida, G., 1957, A new method of hemin isolation, Biochim. Biophys. Acta, 26: 437.

    Article  PubMed  CAS  Google Scholar 

  • Lipson, R.L., Baldes, E.J., and Olsen, A.M., 1961, The use of a derivative of hematoporphyrin in tumor detection, J. Natl. Cancer Inst., 26: 1–8.

    PubMed  CAS  Google Scholar 

  • Kessel, D., 1985. Personal communication.

    Google Scholar 

  • Kessel, D., and Cheng, M.L., 1985, Studies on the biological and biophysical properties of dihematoporhyrin ether, the tumour-localizing component of HPD, Cancer Res., in Press.

    Google Scholar 

  • Sutherland, R.M., and Durand, R.E., 1976, Radiation response of multicell spheroids - an in-vitro tumour model, Current Topics in Radiation Res., 11: 87–139.

    CAS  Google Scholar 

  • Wharen, R.E., Anderson, R.E., and Laws, E.R., 1983, Quantitation of hematoporphyrin derivative in human gliomas, experimental central nervous system tumors, and normal tissues, Neurosurgery, 12: 446–450.

    Article  PubMed  Google Scholar 

  • Williams, J.F., 1973, Oncogenic transformation of hamster embryo cells in-vitro by adenovirus type 5, Nature, 243: 162–163.

    Article  PubMed  CAS  Google Scholar 

  • Wise, B., and Taxdal, D.R., 1967, Studies of the blood-brain barrier utilizing hematoporphyrin, Brain Research, 4: 387–389.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Jeeves, W.P., Wilson, B.C., Firnau, G., Brown, K. (1985). Studies of Hpd and Radiolabelled Hpd In-Vivo and In-Vitro . In: Kessel, D. (eds) Methods in Porphyrin Photosensitization. Advances in Experimental Medicine and Biology, vol 193. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2165-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2165-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9276-0

  • Online ISBN: 978-1-4613-2165-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics