Skip to main content

Bacterial Spores - resistance, dormancy and water status

  • Chapter
The Properties of Water in Foods ISOPOW 6

Abstract

The formation of endospores by Bacillus and Clostridium bacteria and by members of a few other genera can be considered an extreme response to stress in that it results in major remodeling of the entire cell. The spore produced differs markedly in structure, resistance and metabolism from the vegetative cell or sporangium within which it is formed. Bacterial endospores are considered to be inert metabolically, although they can be triggered into activity by germinants. However, the fully dormant spore is truly latent life, and at least some spores can resist the ravages of time for centuries, maybe even for as long as 25 million years, at least according to recent reports of recovery of viable spores from insects preserved in amber (Cano and Borucki, 1995). The basis for this extreme dormancy is not entirely clear, and in fact, there may be multiple bases. The spore protoplast becomes dehydrated in stages during sporulation, but is certainly not devoid of water when spores are in aqueous environments. For greatest longevity, spores have to be further dehydrated by environmental drying Murrel and Scott (1966). Spores are highly resistant to dehydration damage, and part of this resistance appears to be due to small acid-soluble spore proteins (SASP) which bind to DNA to protect it against dehydration damage, which may involve oxidative damage (Fairhead et al., 1994). Dehydration of the protoplast would be expected to lead to reduced metabolism, especially if water becomes restructured in the protoplast. In addition, the mature spore also has a very low energetic potential and is deficient in ATP and NAD(P)H, although it does contain 3-phosphoglycerate which can be used for ATP synthesis during germination (Setlow, 1994). Moreover, it is in an oxidized state with nearly all of its sulfhydryl groups in the form of disulfides (Setlow, 1983). The metabolic bases for the low energy state of spores are not well defined. During germination, the cells can degrade SASP proteolytically to provide amino acids for anabolic and catabolic metabolism (Setlow, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahern, T.J. and Klibanov, A.M. (1985) The mechanism of irreversible enzyme inactivation at 100°C Science, 83, 8069 - 8072.

    Google Scholar 

  • Alderton, G. and Snell, N. (1963) Base exchange and heat resistance of bacterial spores. Biochem. Biophys. Res. Commun, 10, 139 - 143.

    Article  CAS  Google Scholar 

  • Arigoni, F., Pogliano, K., Webb, CD. et al(1995) Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science, 270, 637 - 640.

    Article  CAS  Google Scholar 

  • Balassa, G., Milhaud, P., Raulet, E. et al(1979) Bacillus subtilismutant requiring dipico- linic acid for the development of heat-resistant spores. J. Gen. Microbiol, 110, 365 - 379.

    CAS  Google Scholar 

  • Baldwin, R.L. (1986) Temperature dependence of hydrophobic interactions in protein folding. Proc. Natl. Acad. Set USA, 228, 1280 - 1284.

    Google Scholar 

  • Balny, C, Hayashi, R., Heremans, K and Masson, P. (eds) (1992) High Pressure and Biotechnology. John Libbey Eurotext, Montrouge, France.

    Google Scholar 

  • Beaman, T.C. and Gerhardt, P. (1986) Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl. Environ. Microbiol, 52, 1242 - 1246.

    CAS  Google Scholar 

  • Belliveau, B.H., Beaman, T.C, Pankratz, H.S. and Gerhardt, P. (1992) Heat killing of bacterial spores analyzed by differential scanning calorimetry. J. Bacteriol, 174, 4463 - 4474.

    CAS  Google Scholar 

  • Bender, G.R. and Marquis. R.E. (1985) Spore heat resistance and specific mineralization. Appl. Environ. Microbiol, 50, 1414 - 1421.

    Google Scholar 

  • Bernhardt, G., Ludemann, H.-D., Jaenicke, R. et al(1984) Biomolecules are unstable under ‘Black-smoker’ conditions. Naturwissenschaften, 71, 583 - 586.

    Article  CAS  Google Scholar 

  • Black, S.H. and Gerhardt, P. (1962) Permeability of bacterial spores. IV. Water content, uptake, and distribution. J. Bacteriol 83, 960 - 967.

    CAS  Google Scholar 

  • Brown, K.L. (1985) Heat resistant thermophilic anaerobe isolated from composted forest bark, in Fundamental and Applied Aspects of Bacterial Spores, eds G J. Dring, D.J. Ellar and G.W. Gould, Academic Press, London, pp. 275 - 282.

    Google Scholar 

  • Brown, K.L. (1994) Spore resistance and ultra heat treatment processes. J. Appl. Bacteriol. 76 67S-80S.

    Google Scholar 

  • Buchanan, C.E., Henrlques, A.O. and Piggot, P.J. (1994) Cell wall changes during bacterial endospore formation, in Bacterial Cell Wall, eds J.-M. Ghuysen and R. Hakenbeck, Elsevier, Amsterdam, pp. 167 - 186.

    Chapter  Google Scholar 

  • Busta, F.F., Foegeding, P.M. and Adams, D.M. (1981) Injury and resuscitation of germination and outgrowth of bacterial spores, in Sporulation and Germination, eds H.S. Levinson, A.L. Sonenshein and D.J Tipper American Society for Microbiology, Washington, D.C., pp. 261 - 265.

    Google Scholar 

  • Cano, R.J. and Borucki, M.K. (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Domini, an amber. Science, 268, 1060 - 1064.

    Article  CAS  Google Scholar 

  • Carstensen, E.L. and Marquis, R.E. (1975) Dielectric and electrochemical properties of bacterial cells, in Spores VI, eds P. Gerhardt, R.N. Costilow and H.L. Sadoff, American Society for Microbiology, Washington, D.C., pp. 563 - 571.

    Google Scholar 

  • Carstensen, E.L., Marquis. R.E. and Gerhardt, P. (1971) Dielectric study of the physical state of electrolytes and water within Bacillus cereusspores. J. Bacteriol, 107, 106 - 113.

    CAS  Google Scholar 

  • Condón, S., Palop, A., Raso, J. and Sala, F.J. (1996) Influence of the incubation temperature after heat treatment upon the estimated heat resistance values of spores of Bacillus subtilis. Lett Appl Microbiol, 22, 149 - 152.

    Article  Google Scholar 

  • Cowan, D.A. (1995) Protein stability at high temperatures. Essays Biochem, 29, 193 - 207.

    CAS  Google Scholar 

  • Daniel, R.A. and Errington, J. (1993) Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation of Bacillus subtilis. J. Mol Biol, 232, 468 - 483.

    CAS  Google Scholar 

  • David, J.R.D. and Merson. R.L. (1990) Kinetic parameters for inactivation of Bacillus stearothermophilusat high temperatures, i. Food Set, 55, 488 - 515.

    Article  Google Scholar 

  • Duncan, L., Alper. S., Arigoni, F. et ai (1995) Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270 641-644.

    Google Scholar 

  • Errington, J. (1993) Bacillus subtilissporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev, 57, 1 - 33.

    CAS  Google Scholar 

  • Fairhead, H., Setlow, B and Setlow, P. (1993) Prevention of DNA damage in spores and in vitro by small acid-soluble proteins from Bacillus species. J. Bacteriol 175 1367-1374.

    Google Scholar 

  • Fairhead, H., Setlow, B., Waites. W.M. and Setlow, P. (1994) Small acid-soluble proteins bound to DNA protect Bacillus subtilisspores from killing by freeze drying. Appl Environ. Microbiol, 60, 2647 - 2649.

    CAS  Google Scholar 

  • Flint, D.H., Smyk-Randall, E., Tumenello et al(1993) The inactivation of dihydroxy-acid dehydratase in Escherichia colitreated with hyperbaric oxygen occurs because of the destruction of its Fe-S cluster, but the enzyme remains in the cell in a form that can be reactivated. J. Biol Chem, 268, 25547 - 25552.

    CAS  Google Scholar 

  • Foegeding, P.M. and Busta, F.F. (1983) Hypochlorite injury of Clostridium botulinumspores alters germination responses. Appl Environ. Microbiol, 45, 1360 - 1368.

    CAS  Google Scholar 

  • Foster, S.J. (1994) The role and regulation of cell wall structural dynamics during differentiation of endospore-forming bacteria. J. Appl Bacteriol , 76 25S-39S.

    Google Scholar 

  • Gerhardt, P. and Marquis, R.E. (1989) Spore thermoresistance mechanisms, in Regulation of Prokaryotic Development, eds I. Smith, R. Slepecky and P. Setlow, American Society for Microbiology, Washington, D.C., pp. 17 - 63.

    Google Scholar 

  • Gorman, S.P., Scott, E.M. and Hutchinson, E.P. (1984) Emergence and development of resistance to antimicrobial chemicals and heat in spores of Bacillus subtilis. J. Appl Bacteriol, 57, 153 - 163.

    CAS  Google Scholar 

  • Gould, G.W. (1984) Injury and repair mechanisms in bacterial spores, in The Revival of Injured Microbes, eds M.H.E. Andrew and A.D. Russell, Academic Press, London, pp. 199 - 220.

    Google Scholar 

  • Gould, G.W. and Dring, G.J. (1975) Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nature London, 258, 402 - 405.

    Article  CAS  Google Scholar 

  • Gould, G.W., Russell, A.D. and Stewart-Tull, D.E.S. (1994) Fundamental and applied aspects of bacterial spores. J. Appl Bacteriol 76 Supplement.

    Google Scholar 

  • Gould, G.W., Russell, A.D. and Stewart-Tull, D.E.S. (1994) Fundamental and Applied Aspects of Bacteria! Spores, Blackwell Scientific, Oxford.

    Google Scholar 

  • Gurney, T.R. and Quesnel, L.B. (1981) Amino acid enhancement of recovery in dry-heat damaged spores of Bacillus subtilis. J. Appl. Bacteriol, 51, 67 - 80.

    CAS  Google Scholar 

  • Hanson, R.5., Curry, M.V., Garner, J.V. and Halvorson, H.O. (1972) Mutants of Bacillus cereusstrain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium. Can. J. Microbiol, 18, 1139 - 1143.

    Article  Google Scholar 

  • Härnulv, B.G., Johansson, M. and Snygg, B.G. (1977) Heat resistance of Bacillus stearo- thermophilusspores at different water activities. J. Food Sci, 42, 91 - 93.

    Article  Google Scholar 

  • Hoover, D.G., Metrick, C.. Papineau, A.M. et at (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol , 43 99-107.

    Google Scholar 

  • Hurst, A. (1984) Reversible heat damage, in Repairable Lesions in Micro organ isms, eds A. Hurst and A. Nasim, Academic Press, London, pp. 303 - 318.

    Google Scholar 

  • Jaenicke, R. (1996) Stability and folding of ultrastable proteins: eye lens crystalline and enzymes from thermophiles. FASEB /., 10 84–92.

    Google Scholar 

  • Johnson, K.M. and Busta, F.F. (1984) Detection and enumeration of injured bacterial spores in processed foods, in The Revival of Injured Microbes, eds M.H.E. Andrew and A.D. Russell, Academic Press, London, pp. 241 - 256.

    Google Scholar 

  • King, W.L. and Gould, G.W. (1969) Lysis of bacterial spores- with hydrogen peroxide. J. Appl. Bacteriol 32, 481 - 490.

    CAS  Google Scholar 

  • Labbe, R.G. and Chang, C-A. (1995) Recovery of heat-injured spores of Clostridium perfrin- genstypes B, C and D by lysozyme and an initiation protein. Lett. AppL Microbiol 21, 302 - 306.

    Article  CAS  Google Scholar 

  • Lewis, J.C., Snell, N.S. and Burr, H.K. (1960) Water permeability of bacterial spores and the concept of a contractile cortex. Science, 132, 544 - 545.

    Article  CAS  Google Scholar 

  • Magill, N.G., Cowan, A.E., Koppel, D.E. and Setlow, P. (1994) The internal pH of the fore- spore compartment decreases by about 1 pH unit during sporulation. J. Bacteriol, 176, 2252 - 2258.

    CAS  Google Scholar 

  • Marquis, R.E. and Bender, G.R. (1985) Mineralization and heat resistance of bacterial spores. J. Bacteriol, 161, 789 - 791.

    CAS  Google Scholar 

  • Marquis, R.E. and Bender, G.R. (1990) Compact structure of cortical peptidoglycans from bacterial spores. Can. J. Microbiol, 36, 426 - 429.

    Article  CAS  Google Scholar 

  • Marquis, R.E., Mayzel, K. and Carstensen, EX. (1976) Cation exchange in cell walls of gram-positive bacteria. Can. J. Microbiol, 22, 975 - 982

    Article  CAS  Google Scholar 

  • Marquis, R.E., Bender, G.R., Carstensen, E.L. and Child, S.Z. (1983) Dielectric characterization of forespores isolated from Bacillus megateriumATCC19213. J. Bacterioi, 153, 436 - 442.

    CAS  Google Scholar 

  • Marquis, R.E., Rutherford, G.C., Faraci, M.M. and Shin, S-Y. (1995) Sporicidal action of per ace tic acid and protective effects of transition metal ions. J. Indust. Microbiol, 15, 486 - 492.

    Article  CAS  Google Scholar 

  • Murrell, W.G. (1961) Discussion (on permeability of bacterial spores), in Spores II, ed. H.O. Halvorson, Burgess Publishing, Minneapolis, MN, pp. 229 - 236.

    Google Scholar 

  • Murrell, W.G. and Scott, WJ. (1966) The heat resistance of bacterial spores at various water activities. J. Gen. Microbiol, 43, 411 - 425.

    CAS  Google Scholar 

  • Ou, L-T. and Marquis, R.E. (1970) Electromechanical interactions in cell walls of gram- positive cocci. J. Bacteriol, 101, 92 - 101.

    CAS  Google Scholar 

  • Peck, M.W., Fairbairn, D.A. and Lund, B.M. (1993) Heat resistance of non-proteolytic Clostridium botulinumestimated on medium containing Ivsozyme. Lett. AppL Microbiol, 16, 126 - 131.

    Article  Google Scholar 

  • Pfeifer, J. and Kessler, H.G. (1994) Effect of relative humidity of hot air on the heat resistance of Bacillus cereusspores. J. AppL Bacterioi, 77, 121 - 128.

    Google Scholar 

  • Popham, D.L. and Setlow, P. (1993) The cortical peptidoglvcan from spores of Bacillus megateriumand Bacillus subtiiisis not highly cross-linked. J. Bacterio, 175, 2767- 2769.

    Google Scholar 

  • Popham, D.L., lllades-Aguiar, B. and Setlow. P. (1995) The Bacillus subtiiis dacBgene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J. Bacterioi 177, 4721 - 4729.

    CAS  Google Scholar 

  • Russell, A.D. (1990) Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev, 3, 99 - 119.

    CAS  Google Scholar 

  • Sale, A.J.H., Gould, G.W. and Hamilton, W.A. (1970) Inactivation of bacterial spores by hydrostatic pressure, J. Gen. Microbiol, 60, 323 - 334.

    CAS  Google Scholar 

  • Sapru, V. and Labuza, T.P. (1993) Glassy slate in bacterial spores predicted by polymer glass-transition theory. J. Food Sci, 58, 445 - 448.

    Article  Google Scholar 

  • Sapru, V., Teixeria, A.A., Smerage, G.H. and Lindsay, J.A. (1992) Predicting thermophilic spore population dynamics for UHT sterilization processes. J. Food Sci, 57, 1248 - 1257.

    Article  Google Scholar 

  • Setlow, B. and Setlow, P. (1995) Small, acid-soluble proteins bound to DNA protect Bacillus subtilisspores from killing by dry heat. Appl Environ. Microbiol, 61, 2787 - 2790.

    CAS  Google Scholar 

  • Setlow, B., Magill, N., Febbrorielio, P. et al(1991) Condensation of the forespore nucleoid early in sporulation of Bacillusspecies. Bacteriol, 173, 6270 - 6278.

    CAS  Google Scholar 

  • Setlow, P (1983) Germination and outgrowth, in The Bacterial Spore, eds A. Hurst and G.W. Gould, Academic Press, London, Vol. 2, pp. 211-254.

    Google Scholar 

  • Setlow, P. (1992) I will survive: protecting and repairing spore DNA. J. Bacteriology, 174, 2737 - 2741.

    CAS  Google Scholar 

  • Setlow, P. (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J. Appl Bacterial 76 49S-60S.

    Google Scholar 

  • Setlow, P. (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillusspecies. Ann. Rev. Microbiol, 49, 29 - 54.

    Article  CAS  Google Scholar 

  • Shin, S-Y. and Marquis, R.E. (1994) Sporicidal activity of tertiary butyl hydroperoxide. Archiv. Microbiol, 161, 184 - 190.

    Article  CAS  Google Scholar 

  • Shin, S-Y, Calvisi, E.G., Beaman, T.C. et al(1994) Microscopic and thermal characterization of hydrogen peroxide killing and lysis of spores and protection by transition metal ions, chelators, and antioxidants. Appl Environ. Microbiol, 60, 3192 - 3197.

    CAS  Google Scholar 

  • Slepecky, R.A. and Foster, J.W. (1959) Alteration in metal content of spores of Bacillus megateriumand the effect on some spore properties. J. Bacteriol, 78, 117 - 123.

    CAS  Google Scholar 

  • Stadtman, E.R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Ann. Rev. Biochem, 62, 797 - 821.

    Article  CAS  Google Scholar 

  • Szweda, L.L and Stadtman, E.R. (1992) Iron-catalyzed oxidative modification of glucoses- phosphate dehydrogenase from Leuconostoc mesenteroides. J. Biol Chem, 267, 3096 - 3100.

    CAS  Google Scholar 

  • Thwaites, J J. and Mendelson, N.H. (1991) Mechanical behaviour of bacterial cell walls. Adv. Microbiol Physiol, 32, 173 - 222.

    Article  CAS  Google Scholar 

  • Wallen, S.E. and Walker, H.W. (1979) Influence of media and media constituents on recovery of bacterial spores exposed to hydrogen peroxide. J. Food Sci, 44, 560 - 563.

    Article  CAS  Google Scholar 

  • Warth, A.D. (1978) Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillusspecies. J. Bacteriol, 134, 699 - 705.

    CAS  Google Scholar 

  • Warth, A.D. (1980) Heat stability of Bacillus cereusenzymes within spores and in extracts. J. Bacteriol, 143, 27 - 34.

    CAS  Google Scholar 

  • Warth, A.D. (1985) Mechanisms of heat resistance, in Fundamental and Applied Aspects of Bacterial Spores, eds G.J. Dring. D. 1. Ellar and G.W. Gould, Academic Press, London, pp. 209 - 225.

    Google Scholar 

  • Warth, A.D. and Strominger, J.L. (1972) Structure of the peptidoglycan from spores of Bacillus subtilis. Biochemistry, 11, 1389 - 1396.

    CAS  Google Scholar 

  • White, R.H. (1984) Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. Nature London, 310, 430 - 432.

    Article  CAS  Google Scholar 

  • Wilkinson, B.J., Deans, J.A. and Ellar, D.J. (1975) Biochemical evidence for the reversed polarity of the outer membrane of the bacterial forespore. Biochem. J, 152, 561 - 569.

    CAS  Google Scholar 

  • Williams, N.D. and Russell, A.D. (1993) Revival of biocide-treated spores of Bacillus subtilis. J. Appl Bacteriol, 75, 69 - 75.

    CAS  Google Scholar 

  • Yudkin, M. (1993) Spore formation in Bacillus subtilis. Sci. Progr, 77, 113 - 130.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Thomson Science

About this chapter

Cite this chapter

Marquis, R.E. (1998). Bacterial Spores - resistance, dormancy and water status. In: Reid, D.S. (eds) The Properties of Water in Foods ISOPOW 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0311-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0311-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7991-1

  • Online ISBN: 978-1-4613-0311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics