Skip to main content

Geometric Elastodynamics: Rays and Generalized Rays

  • Chapter
Seismic Waves and Sources

Abstract

The separation of dependent and independent variables is of fundamental importance in the analytic determination of the fields associated with the partial differential equations of mathematical physics. In particular, the determination of the displacement field at any point of a heterogeneous elastic medium is greatly simplified if the vector wave equation of elasticity can be split into three equations; corresponding to the P, SV, and SH waves of seismology. Although the SH motion can be separated from the P and SV motions for all radially heterogeneous isotropic media, the P and SV motions, in general, can at most be reduced to a system of two coupled scalar equations. The vector wave equation is called decoupled if these two scalar equations can be transformed into two uncoupled equations, one corresponding to P waves and the other to SV waves.

Everything should be made as simple as possible, but not simpler.

(Albert Einstein)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Airy GB (1838) On intensity of light in the neighbourhood of a caustic. Camb Phil Trans 6: 379–401.

    Google Scholar 

  • Bateman H (1928) Transverse seismic waves on the surface of a semi-infinite solid composed of heterogeneous material. Bull Amer Math Soc 34: 343–348.

    Article  Google Scholar 

  • Ben-Menahem A (1960) Diffraction of elastic waves from a surface-source in a heterogeneous medium. Bull Seism Soc Amer 50: 15–33.

    Google Scholar 

  • Ben-Menahem A (1975a) Elastic wave-motion across a vertical discontinuity. Jour Eng Math 9: 145–158.

    Article  Google Scholar 

  • Ben-Menahem A (1975b) Source parameters of the Siberian explosion of June 30,1908 from analysis and synthesis of seismic signals at four stations. Phys Earth Planet Int 11: 1–35.

    Article  Google Scholar 

  • Ben-Menahem A, Cisternas A (1963) The dynamic response of an elastic half-space to an explosion in a spherical cavity. Jour Math Phys 42: 112–125.

    Google Scholar 

  • Ben-Menahem A, Gillon A (1970) Crustal deformation by earthquakes and explosions. Bull Seismol Soc Amer 60: 193–215.

    Google Scholar 

  • Ben-Menahem A, Weinstein M (1970) The P-SV decoupling condition and its bearing on the structure of the earth. Geophys Jour Roy Astron Soc (London) 21: 131–135.

    Google Scholar 

  • Ben-Menahem A, Jarosch H, Rosenman M (1968) Large scale processing of seismic data in search of regional and global stress patterns. Bull Seismol Soc Amer 58: 1899–1932.

    Google Scholar 

  • Ben-Menahem A, Singh SJ, Solomon F (1969) Deformation of a spherical earth model by internal dislocations. Bull Seismol Soc Amer 59: 813–853.

    Google Scholar 

  • Ben-Menahem A, Singh SJ, Solomon F (1970) Deformation of a homogeneous earth model by finite dislocations. Rev Geophys Space Phys 8: 591–632.

    Article  Google Scholar 

  • Ben-Menahem A, Smith SW, Teng TL ( 1965) A procedure for source studies from spectrums of long-period seismic body waves. Bull Seismol Soc Amer 55: 203–235.

    Google Scholar 

  • Born M, Wolf E (1964) Principles of Optics (2nd rev ed) Pergamon, New York, 808 pp.

    Google Scholar 

  • Brekhovskikh LM (1948) Distribution of sound in a liquid layer with a constant velocity gradient (in Russian). Dokl Akad Nauk SSSR 62: 469–471.

    Google Scholar 

  • Bruns H (1895) Das Eikonal. Abh Kgl Sächs Ges Wiss Math-Phys Kl 21: 370–391.

    Google Scholar 

  • Bullen KE (1961) Seismic ray theory. Geophys Jour Roy Astron Soc (London) 4: 93–105.

    Google Scholar 

  • Burridge R, Lapwood ER, Knopoff L (1964) First motions from seismic sources near a free surface. Bull Seismol Soc Amer 54: 1889–1913.

    Google Scholar 

  • Byerly P (1926) The Montana Earthquake of June 28, 1925. Bull Seismol Soc Amer 16: 209–265.

    Google Scholar 

  • Cagniard L (1939) Réflection et réfraction des ondes séismiques progressive. Gauthier-Villars and Cie, Paris.

    Google Scholar 

  • Chao CC, Bleich HH, Sackman J (1961) Surface waves in an elastic half-space. Jour Appl Mech 28: 300–301.

    Article  Google Scholar 

  • Clebsch A (1863) Über die Reflection an einer Kugelfläche. Jour Math 61: 195–262.

    Google Scholar 

  • Dix CH (1961) The seismic head pulse, reflection and pseudo-reflection pulses. Jour Geophys Res 66: 2945–2951.

    Article  Google Scholar 

  • Dziewonski AM, Gilbert F (1976) The effect of small, aspherical perturbations on travel times and re-examination of the corrections for ellipticity. Geophys Jour Roy Astron Soc (London) 44: 7–17.

    Google Scholar 

  • Epstein PS (1930) Geometrical optics in absorbing media. Proc Natl Acad Sci (US) 16: 37–45.

    Article  Google Scholar 

  • Gerjuoy E (1953) Total reflection of waves from a point source. Comm Pure Appl Math 6: 73–91.

    Article  Google Scholar 

  • Gerver M, Markushevich V (1966) Determination of a seismic wave velocity from the travel-time curve. Geophys Jour Roy Astron Soc (London) 11: 165–173.

    Google Scholar 

  • Helmberger DV (1968) The crust-mantle transition in the Bering-Sea. Bull Seismol Soc Amer 58: 179–214.

    Google Scholar 

  • Herglotz G (1907) Über das Benndorfsche Problem der Fortpflanzungsgeschwindigkeit der Erdbenstrahlen. Phys Zeit 8: 145–147.

    Google Scholar 

  • Herrin E (1968) Seismological Tables for P phases. Bull Seismol Soc Amer 58: 1193–1241.

    Google Scholar 

  • Hill DP (1973) Critically refracted waves in a spherically symmetric radially heterogeneous earth model. Geophys Jour Roy Astron Soc (London) 34: 149–177.

    Google Scholar 

  • Honda H ( 1962) Earthquake mechanism and seismic waves. Jour Phys Earth 10:1–97.

    Article  Google Scholar 

  • Hook JF (1962) Contributions to a theory of separability of the vector wave equation of elasticity for inhomogeneous media. Jour Acoust Soc Amer 34: 946–953.

    Article  Google Scholar 

  • Hron F (1972) Numerical methods of ray generation in multilayered media. In: Bolt BA (ed.) Methods in Computational Physics 12: 1–34, Academic Press, New York.

    Google Scholar 

  • Ingram RE, Hodgson JH (1956) Phase change of PP and pP on reflection at a free surface. Bull Seismol Soc Amer 46: 203–213.

    Google Scholar 

  • Israel M, Ben-Menahem A (1974) Residual displacements and strains due to faulting in real earth models. Phys Earth Planet Int 8: 23–45.

    Article  Google Scholar 

  • Israel M, Vered M (1977) Near-field source parameters by finite-source theoretical seismo-grams. Bull Seismol Soc Amer 67: 631–640.

    Google Scholar 

  • Jeffreys H (1931) The formation of Love waves (Querwellen) in a two-layer crust. Gerl Beit Geophys 30: 336–350.

    Google Scholar 

  • Jeffreys H, Bullen KE (1940) Seismological Tables. British Association for the Advancement of Science, London.

    Google Scholar 

  • Johnson LE, Gilbert F (1972) Inversion and inference for teleseismic ray data. In: Bolt BA (ed) Methods in Computational Physics 12: 231–266, Academic Press, New York.

    Google Scholar 

  • Karal FC Jr, Keller JB (1959) Elastic wave propagation in homogeneous and inhomogeneous media. Jour Acoust Soc Amer 31: 694–705.

    Article  Google Scholar 

  • Kawasumi H (1937) A historical sketch of the development of knowledge concerning the initial motion of an earthquake. Publ Bureau Central Seismol Intern Ser A Travaux Sci 15: 258–330.

    Google Scholar 

  • Kline M, Kay IW (1965) Electromagnetic Theory and Geometrical Optics. Interscience, New York.

    Google Scholar 

  • Knopoff L, Gilbert F (1959) First motion methods in theoretical seismology. Jour Acoust Soc Amer 31: 1161–1168.

    Article  Google Scholar 

  • Knott CG (1919) The propagation of earthquake waves through the earth and connected problems. Proc Roy Soc Edinburgh 39: 157–208.

    Google Scholar 

  • Lamb H (1904) On the propagation of tremors over the surface of an elastic solid. Phil Trans Roy Soc (London) A203: 1–42.

    Google Scholar 

  • Lapwood ER (1949) The disturbance due to a line source in a semi-infinite elastic medium. Phil Trans Roy Soc (London) A242: 63–100.

    Google Scholar 

  • Mohorovičić A (1910) Das Beben vom 8, Okt., 1909. Jharb Meteorol Obs Zagreb (Agram) 9: Part IV, Zagreb.

    Google Scholar 

  • Mooney HM (1974) Some numerical solutions for Lamb’s problem. Bull Seismol Soc Amer 64: 473–491.

    Google Scholar 

  • Nakamura ST (1922) On the distribution of the first movement of the earthquake. Jour Meteorol Soc Japan 2: 1–10.

    Google Scholar 

  • Oldham RD (1900) On the propagation of earthquake motion to great distances. Phil Trans Roy Soc (London) A194: 135–174.

    Google Scholar 

  • Pekeris CL (1950) Ray theory vs. normal mode theory in wave propagation problems. Proc Symp Appl Math 2: 71–75.

    Google Scholar 

  • Pekeris CL, Alterman Z, Abramovici F (1963) Propagation of an SH-torque pulse in a layered solid. Bull Seismol Soc Amer 53: 39–57.

    Google Scholar 

  • Pridmore-Brown DC, Ingrad U (1955) Sound propagation into the shadow zone in a temperature-stratified atmosphere above a plane boundary. Jour Acoust Soc Amer 27: 36–42.

    Article  Google Scholar 

  • Rabinowitz P (1970) Gaussian integration of functions with branch point singularities. Intern Jour Comp Math 2: 297–306.

    Article  Google Scholar 

  • Shimshoni M, Ben-Menahem A (1970) Computation of the divergence coefficient for seismic phases. Geophys Jour Roy Astron Soc (London) 21: 285–294.

    Google Scholar 

  • Singh SJ, Ben-Menahem A (1969a) Displacement and strain fields due to faulting in a sphere. Phys Earth Planet Int 2: 77–87.

    Article  Google Scholar 

  • Singh SJ, Ben-Menahem A (1969b) Decoupling of the vector wave equation of elasticity for radially heterogeneous media. Jour Acoust Soc Amer 46: 655–660.

    Article  Google Scholar 

  • Singh SJ, Ben-Menahem A (1969c) Asymptotic theory of body waves in a radially heterogeneous earth. Bull Seismol Soc Amer 59: 2039–2059.

    Google Scholar 

  • Singh SJ, Ben-Menahem A, Shimshoni M (1972) Theoretical amplitudes of body waves from a dislocation source in the earth. I. Core reflections. Phys Earth Planet Int 5: 231–263.

    Article  Google Scholar 

  • Slichter LB (1932) The theory of the interpretation of seismic travel-time curves in horizontal structures. Physics 3: 273–295.

    Article  Google Scholar 

  • Smirnov V (1933) Sur l’application de la méthode nouvelle à l’étude les vibrations élastiques dans l’espace à symétrie axiale. Publ Inst Seismol Acad Sci URSS No. 29.

    Google Scholar 

  • Smirnov V, Sobolev S (1932, 1933) Sur une méthode nouvelle dans le probléme plan des vibrations élastiques. Publ Inst Séismol Acad Sci URSS Nos. 20, 29.

    Google Scholar 

  • Sommerfeld A, Runge J (1911) Anwendung der Vektorrechnung auf die Grundlagen der Geometrischen Optik. Ann Phys 35: 277–298.

    Article  Google Scholar 

  • Spencer TW (1960) The method of generalized reflection and transmission coefficients. Geophys 25: 624–641.

    Article  Google Scholar 

  • Tolstoy I, Usdin E (1953) Dispersive properties of stratified elastic and liquid media: A ray theory. Geophys 18: 844–870.

    Article  Google Scholar 

  • Vered M, Ben-Menahem A (1974) Application of synthetic seismograms to the study of low-magnitude earthquakes and crustal structure in the northern Red-Sea region. Bull Seismol Soc Amer 64: 1221–1237.

    Google Scholar 

  • Vered M, Ben-Menahem A (1976) Generalized multipolar ray theory for surface and shallow sources. Geophys Jour Roy Astron Soc (London) 45: 195–198.

    Google Scholar 

  • Vered M, Ben-Menahem A, Aboodi E (1975) Computer generated P and S waveforms from an earthquake source. Pure Appl Geophys 113: 651–659.

    Article  Google Scholar 

  • Werth GC, Herbst RF, Springer DL (1962) Amplitudes of seismic arrivals from the M discontinuity. Jour Geophys Res 67: 1587–1610.

    Article  Google Scholar 

  • Wiechert E, Geiger L (1910) Bestimmung des Weges der Erdbeben wellen im Erdinnern. Phys Zeit 11: 294–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ben-Menahem, A., Singh, S.J. (1981). Geometric Elastodynamics: Rays and Generalized Rays. In: Seismic Waves and Sources. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5856-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5856-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5858-2

  • Online ISBN: 978-1-4612-5856-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics