Skip to main content

Detecting Plant Viruses in Their Vectors

  • Chapter

Part of the book series: Advances in Disease Vector Research ((VECTOR,volume 6))

Abstract

Until the advent of such techniques as electron microscopy and serology, the principal way of determining whether a suspected virus vector contained a plant-infecting virus was to allow it access to a plant host known to be susceptible to the virus. In other words, a bioassay of the vector for the appropriate virus was performed. An alternative approach was to use extracts of whole suspected vectors to inoculate susceptible test species mechanically. The latter method was obviously of limited use, and its usefulness was greatly affected by low virus concentrations in potential vectors and inactivation of virus in vector extracts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., and Tamada, T., 1986, Association of beet necrotic yellow vein virus with isolates of Polymyxa betae. Keskin, Ann. Phytopathol. Soc. Japan 52:235–247.

    Google Scholar 

  2. Adams, M.J., 1988, Evidence for virus transmission by plasmodiophorid vectors, In Cooper J.I., and Asher M.J.C. (eds): Viruses with Fungal Vectors, Wellesbourne, Warwick, England, Association of Applied Biologists, pp. 203–211.

    Google Scholar 

  3. Adams, M.J., Swaby, A.G., and Jones, P., 1988, Confirmation of the transmission of barley yellow mosaic virus (BaYMV) by the fungus Polymyxa graminis, Ann. Appl. Biol. 122:133–141.

    Article  Google Scholar 

  4. Azar, M., and Banttari, D., 1981, Enzyme-linked immunosorbent assay versus transmission assay for detection of oat blue dwarf virus in aster leafhoppers, Phytopathology 71:856.

    Google Scholar 

  5. Barr, D.J.S., 1988, Zoosporic plant parasites as fungal vectors of viruses: taxonomy and life cycles of species involved, in Cooper J.I. and Asher, M.J.C. (eds): Viruses with Fungal Vectors, Wellesbourne, Warwick, England, Association of Applied Biologists, pp. 123–137.

    Google Scholar 

  6. Bennett, C.W., and Wallace, H.E., 1938, Relation of the curly top virus to the vector Eutettix tenellus, J. Agricult. Res. 56:31–50.

    Google Scholar 

  7. Berger, P.H., Thornbury, D.W., and Pirone, T.P., 1985, Detection of picogram quantities of potyviruses using a dot blot immunobinding assay. J. Virol. Methods 12:31–39.

    Article  PubMed  CAS  Google Scholar 

  8. Boulton, M.I., Markham, P.G., and Davies, J.W., 1984, Nucleic acid hybridization techniques for the detection of plant pathogens in insect vectors, 1984 Brit. Crop. Prot. Cong.—Pests and Disease 1:181–186.

    Google Scholar 

  9. Boulton, M.I., and Markham, P.G., 1986, The use of squash blotting to detect plant pathogens in insect vectors, in Jones R.A.C., and Torrance, L. (eds): Developments and Applications in Virus Testing, Wellesbourne, Warwick, England, Association of Applied Biologists, pp. 55–69.

    Google Scholar 

  10. Caciagli, P., Roggero, P., and Luisoni, E., 1985, Detection of maize rough dwarf virus by enzyme-linked immunosorbent assay in plant hosts and in the planthopper vector, Ann. Appl. Biol. 107:463–471.

    Article  Google Scholar 

  11. Cambra, M., Hermoso de Mendoza, H., Moreno, P., and Navarro, L., 1981, Detection of citrus tristeza virus (CTV) in aphids by enzyme-linked immuno-sorbent assay, Abst. Meet. Virus Dis. Epid. Oxford, Wellesbourne, Warwick, England, Association of Applied Biologists, pp. 71–72.

    Google Scholar 

  12. Carlebach, R., Raccah, B., and Loebenstein, G., 1982, Detection of potato virus Y in the aphid Myzus persicae by enzyme-linked immuno-sorbent assay (ELISA), Ann. Appl. Biol. 101:511–516.

    Article  Google Scholar 

  13. Childress, S.A., and Harris, K.F., 1989, Localization of virus-like particles in the foreguts of viruliferous Graminella nigrifrons leafhoppers carrying the semi-persistent maize chlorotic dwarf virus, J. Gen. Virol. 70:247–251.

    Article  Google Scholar 

  14. Cho, J.J., Mau, R.F.L., Hamaski, R.T., and Gonsalves, D., 1988, Detection of tomato spotted wilt virus in individual thrips by enzyme-linked immunosor-bent assay, Phytopathology 78:1348–1352.

    Article  Google Scholar 

  15. Chu, P.W.G., and Francki, R.I.B., 1982, Detection of lettuce necrotic yellows virus by an enzyme-linked immunosorbent assay in plant hosts and the insect vector, Ann. Appl. Biol. 100:149–156.

    Article  Google Scholar 

  16. Clark, M.F., and Adams, A.N., 1977, Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses, J. Gen. Virol. 34:475–483.

    Article  PubMed  CAS  Google Scholar 

  17. Clarke, R.G., Converse, R.H., and Kojima, M., 1980, Enzyme-linked immunosorbent assay to detect potato leafroll virus in potato tubers and viruliferous aphids. Pl. Dis. 64:43–45.

    Article  Google Scholar 

  18. Conti, M., and Plumb, R.T., 1977, Barley yellow striate mosaic virus in the salivary glands of its planthopper vector Laodelphax striatellus Fallén, J. Gen. Virol. 34:107–114.

    Article  Google Scholar 

  19. Czosnek, H., Ber, R., Navot, N., Zamir, D., Antignus, Y., and Cohen, S., 1988, Detection of tomato yellow leaf curl virus in lysates of plants and insects by hybridization with a viral DNA probe, Pl. Dis. 72:949–951.

    Article  Google Scholar 

  20. Dale, W.T., 1953, The transmission of plant viruses by biting insects, with particular reference to cowpea mosaic, Ann. Appl. Biol. 40:384–392.

    Article  Google Scholar 

  21. de Zoeten, G.A., 1968, Application of scanning microscopy in the study of virus transmission of aphids, J. Virol. 2:745–751.

    PubMed  Google Scholar 

  22. Denéchère, M., Cante, F., and Lapierre, H., 1979, Détection immuno- enzymatique du virus de la jaunisse nanisante de l’orge dans son vecteur Rhopalosiphum padi (L.), Ann. Phytopathol. 11:567–574.

    Google Scholar 

  23. Derrick, K.S., 1973, Quantitative assay for plant viruses using serologically specific electron microscopy, Virology 56:652–653.

    Article  PubMed  CAS  Google Scholar 

  24. Fargette, D., Jenniskens, M.J., and Peters, D., 1982, Acquisition and transmission of pea enation mosaic virus by the individual pea aphid, Phytopathology 72:1386–1390.

    Article  Google Scholar 

  25. Forde, S.M.D., 1989, Strain differentiation of barley yellow dwarf virus isolates using specific monoclonal antibodies in immuno-sorbent electron microscopy, J. Virol. Methods 23:313–320.

    Article  PubMed  CAS  Google Scholar 

  26. Francki, R.I.B., Ryan, C.C., Hatta, R., Rohozinski, J., and Grivell, C.J., 1986, Serological detection of Fiji disease virus antigens in the planthopper Perkinsiella saccharicida and its inefficient ability to transmit the virus, Pl. Pathol. 35:324–328.

    Article  Google Scholar 

  27. Fukushi, T., and Shikata, E., 1963, Localization of rice dwarf in its insect vector, Virology 21:503–505.

    Article  Google Scholar 

  28. Fukushi, T., Shikata, E., and Kimura, I., 1962, Some morphological characters of rice dwarf virus, Virology 18:192–205.

    Article  PubMed  CAS  Google Scholar 

  29. Gamez, R., and Black, L.M., 1968, Particle counts on wound tumor virus during its peak concentration in leafhoppers, Virology 34:444–451.

    Article  PubMed  CAS  Google Scholar 

  30. Gamez, R., Rivera, C., and Kitajima, E.W., 1981, The biological cycle of maize rayado fino virus in its insect vector Dalbulus maidis, Proc. Int. Congr. Virol. 5th Strasbourg, p. 213 (Abstr.).

    Google Scholar 

  31. Gera A., Loebenstein, G., and Raccah, B., 1978, Detection of cucumber mosaic virus in viruliferous aphids by enzyme-linked immunosorbent assay, Virology 86:542–545.

    Article  PubMed  CAS  Google Scholar 

  32. Gergerich, R.C., and Scott, H.A., 1988, The enzymatic function of ribonucle- ase determines plant virus transmission by leaf-feeding beetles, Phytopathology 78:270–272.

    Article  CAS  Google Scholar 

  33. Gildow, F.E., 1982, Coated-vesicle transport of luteoviruses through salivary glands of Myzus persicae, Phytopathology 72:1289–1296.

    Article  Google Scholar 

  34. Gildow, F.E., 1985, Transcellular transport of barley yellow dwarf virus into the hemocoel of the aphid vector, Rhopalosiphum padi, Phytopathology 75:292–297.

    Article  Google Scholar 

  35. Gildow, F.E., 1987, Virus-membrane interactions involved in circulative transmission of luteoviruses by aphids, in Harris, K.F., (ed): Current Topics in Vector Research Volume 4, New York, Springer-Verlag, pp. 94–120.

    Google Scholar 

  36. Gildow, F.E., and Rochow, W.F., 1980, Role of accessory salivary glands in aphid transmission of barley yellow dwarf virus, Virology 104:97–108.

    Article  PubMed  CAS  Google Scholar 

  37. Gingery, R.E., Gordon, D.T., and Nault, L.R., 1982, Purification and properties of an isolate of maize rayado fino virus from the United States, Phytopathology 72:1313–1318.

    Article  Google Scholar 

  38. Harris, K.F., 1981, Role of virus-vector interactions and vector feeding behavior in noncirculative transmission by leafhoppers, Proc. Int. Cong. Virol. 5th, Strasbourg, 1981, p. 213. (Abstr.).

    Google Scholar 

  39. Harris, K.F., Bath, J.E., Thottappilly, G., and Hooper, G.R., 1975, Fate of pea enation mosaic virus in PEMV-injected pea aphids, Virology 65:148–162.

    Article  PubMed  CAS  Google Scholar 

  40. Hibino, H., and Kimura, I., 1983, Detection of rice ragged stunt virus in insect vectors by enzyme-linked immunosorbent assay, Phytopathology 72:656–659.

    Article  Google Scholar 

  41. Hibino, H., Saleh, N., and Roecham, M. 1979, Reovirus-like particles associated with rice ragged stunt diseased rice and insect vector cells, Ann. Phytopathol. Soc. Japan 45:228–229.

    Google Scholar 

  42. Jayasena, K.W., Randies, J.W., and Barnett, O.W., 1984, Synthesis of a complementary DNA probe specific for detecting subterranean clover red leaf virus in plants and aphids, J. Gen. Virol. 65:109–117.

    Article  CAS  Google Scholar 

  43. Kikumoto, T., and Matsui, C., 1962, Electron microscopy of plant viruses in aphid midguts, Virology 16:509–510.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, K.S., Scott, H.A., and Robinson, M.D., 1977, Ultrastructural responses of bean leaf beetle hemocytes to beetle-transmitted and non-transmitted plant viruses, Proc. Am. Phytopathol. Soc. 4:130.

    Google Scholar 

  45. Kopek, J.A., and Scott, H.A., 1983, Southern bean mosaic virus in Mexican bean beetle and bean leaf beetle regurgitants, J. Gen. Virol. 64:1601–1605.

    Article  Google Scholar 

  46. Lim, W.L., de Zoeten, G.A., and Hagedorn, D.J., 1977, Scanning electron- microscopic evidence for attachment of a nonpersistently transmitted virus to its vector’s stylets, Virology 79:121–128.

    Article  PubMed  CAS  Google Scholar 

  47. Lopez-Abella, D., Pirone, T.P., Mernaugh, R.E., and Johnson, M.C., 1981. Effect of fixation and helper component on the detection of potato virus Y in alimentary tract extracts of Myzus persicae, Phytopathology 71:807–809.

    Article  Google Scholar 

  48. Matisova, J., and Valenta, V., 1975, Versuche zum nachweis des Enationen- virus der Erbse im Vektor, Acyrthosiphon pisum, mit Hilfe der immuno- fluoreszenze-Methode, Tag. Berl. Landwirtsch. Wiss, DDR, Berlin 134:91–98.

    Google Scholar 

  49. Mumford, D.L., 1982, Using enzyme-linked immunosorbent assay to identify beet leafhopper populations carrying beet curly top virus, Pl. Dis. 66:940–941.

    Article  Google Scholar 

  50. Murant, A.F., Roberts, I.M., and Elnagar, S., 1976, Association of virus-like particles with the foregut of the aphid Cavariella aegopodii transmitting the semi-persistent viruses anthriscus yellows and parsnip yellow fleck, J. Gen. Virol. 31:47–57.

    Article  Google Scholar 

  51. O’Loughlin, G.T., and Chambers, T.C., 1967, The systemic infection of an aphid by a plant virus, Virology 33:262–271.

    Article  PubMed  Google Scholar 

  52. Omura, T., Hibino, H., Usugi, T., Inoue, H., Morinaka, T., Tzurumachi, S., Ong, C.A., Putta, M., Tsuchizaki, T., and Saito, Y., 1984, Detection of rice viruses in plants and individual insect vectors by latex flocculation test. Pl. Dis. 68:374–378.

    Google Scholar 

  53. Orlob, G.B., 1968, Relationship between Tetranychus urticae Koch and some plant viruses, Virology 35:121–133.

    Article  PubMed  CAS  Google Scholar 

  54. Orlob, G.B., and Takahashi, Y., 1971, Location of plant viruses in the two spotted spider mite Tetranychus urticae Koch, Phytopathol. 72:21–28.

    Article  Google Scholar 

  55. Ossiannilson, F., 1968, Is tobacco mosaic virus not imbibed by aphids and leafhoppers? Kungl. Lantbruks. Hogskol. Ann. 24:369–374.

    Google Scholar 

  56. Ozel, M., 1971, Vergleichende elektronenmikroskopische Untersuchungen an Rhabdoviren pflanzlicher und tierischer Herkunft. I. Erste elektronen-mikroskopische Ergebnisse mit dem pflanzlichen Modell Sowthistle Yellow Vein Virus (SYVV) and seinem Vektor Hyperomyzus lactucae (L), Zentralbl. Bakteriol. Parasitenk. Infektionskr. Abt. 1. 217:160–174.

    CAS  Google Scholar 

  57. Paliwal, Y.C., 1972, Brome mosaic virus infection in the wheat curl mit Aceria tulipae a non-vector of the virus, J. Invertebr. Pathol. 20:288–302.

    Article  Google Scholar 

  58. Paliwal, Y.C., 1980a, Fate of plant viruses in mite vectors and nonvectors, in Harris, K.F., and Maramorosch, K. (eds): Vectors of Plant Pathogens, New York, Academic Press, pp. 357–373.

    Google Scholar 

  59. Paliwal, Y.C., 1980b, Relationship of wheat streak mosaic virus and barley stripe mosaic viruses to vector and nonvector eriophyid mites, Arch. Virol. 63:123–132.

    Article  PubMed  CAS  Google Scholar 

  60. Paliwal, Y.C., 1982, Detection of barley yellow dwarf virus in aphids by serologically specific electron microscopy, Can. J. Bot. 60:179–185.

    Article  Google Scholar 

  61. Paliwal, Y.C., 1987, Immunoelectron microscopy of plant viruses and myco-plasmas, in Harris, K.F. (ed): Current Topics in Vector Research, Volume 3, New York, Springer-Verlag, pp. 217–249.

    Google Scholar 

  62. Paliwal, Y.C., and Slykhuis, J.T., 1967, Localization of wheat streak mosaic virus in the alimentary canal of its vector Aceria tulipae Keifer, Virology 32:344–353.

    Article  PubMed  CAS  Google Scholar 

  63. Pirone, T.P., 1977, Accessory factors in nonpersistent virus transmission, in Harris K.F., and Maramorosch, K. (eds): Aphids as Virus Vectors, New York, Academic Press, pp. 224–235.

    Google Scholar 

  64. Pirone, T.P., and Thornbury, D.W., 1988, Quantity of virus required for aphid transmission of a potyvirus, Phytopathology 78:104–107.

    Article  Google Scholar 

  65. Plumb, R.T., 1981, Problems in the use of sensitive serological methods for detecting viruses in vectors, in Plumb, R.T. (ed): Proc. 3rd Conf. Virus Dis. Gramin, Europe, Rothamsted, Hertfordshire, England, pp. 123–126.

    Google Scholar 

  66. Plumb, R.T., Lennon, E.A., and Gutteridge, R.A., 1986, Forecasting barley yellow dwarf virus by monitoring vector populations and infectivity, in McLean, G.D., Garrett, R.G., and Ruesink, W.G. (eds): Plant Virus Epidem-ics, Sydney, Academic Press, pp. 387–398.

    Google Scholar 

  67. Rivera, C., Kozuka, Y., and Gamez, R. 1981, Rayado fino virus: Detection in salivary glands and evidence of increase in virus titre in the leafhopper vector Dalbulus maidis, Turrialba 31:78–80.

    Google Scholar 

  68. Roberts, I.M., and Brown, D.J.F., 1980, Detection of six nepoviruses in their nematode vectors by immunosorbent electron microscopy, Ann. Appl. Biol. 96:187–192.

    Article  Google Scholar 

  69. Roberts, I.M., and Harrison, B.D., 1979, Detection of potato leafroll and potato mop-top viruses by immunosorbent electron microscopy, Ann. Appl. Biol. 93:289–297.

    Article  Google Scholar 

  70. Scott, H.A., and Fulton, J.P., 1978, Comparison of the relationship of southern bean mosaic virus and the cowpea strain of tobacco mosaic virus with the bean leaf beetle, Virology 84:207–209.

    Article  PubMed  CAS  Google Scholar 

  71. Shikata, E., Maramorosch, K., and Granados, R.R., 1966, Electron microscopy of pea enation mosaic virus in plants and aphid vectors, Virology 29:426–436.

    Article  PubMed  CAS  Google Scholar 

  72. Shikata, E., Orenski, S.W., Hirumi, H., Mitsuhashi, J., and Maramorosch, K., 1964, Electron micrographs of wound tumor virus in an animal host and in a plant tumor, Virology 23:441–444.

    Article  PubMed  CAS  Google Scholar 

  73. Sinha, R.C., 1965, Recovery of potato yellow dwarf virus from hemolymph and internal organs of an insect vector, Virology 27:118–119.

    Article  PubMed  CAS  Google Scholar 

  74. Sinha, R.C., 1966, Sequential infection and distribution of wound tumor virus in the internal organs of a vector after ingestion of virus, Virology 26:673–686.

    Article  Google Scholar 

  75. Sinha, R.C., and Black, L.M., 1962, Studies on the smear technique for detecting virus antigens in an insect vector by use of fluorescent antibodies, Virology 17:582–587.

    Article  PubMed  CAS  Google Scholar 

  76. Sinha, R.C., and Reddy, D.V.R., 1964, Improved fluorescent smear tech-nique and its application in detecting virus antigens in an insect vector, Virology 24:626–634.

    Article  PubMed  CAS  Google Scholar 

  77. Slack, S.A., and Scott, H.A., 1971, Hemolymph as a reservoir for the cowpea strain of southern bean mosaic virus in the bean leaf beetles, Phytopathology 61:538–540.

    Article  Google Scholar 

  78. Stein-Margolina, V.A., 1973, Bromegrass mosaic virus in the mite Aceria tritici (electron microscopical investigations), Izvestiya Akad. Nauk, USSR 2:189–195.

    Google Scholar 

  79. Stein-Margolina, V.A., 1975, Phytopathogenic viruses of cereals in the gall mite Aceria tritici Shev, Tag. Berl. Akad. Landwirtsch.—Wiss DDR Berlin 134:181–198.

    Google Scholar 

  80. Stobbs, L.W., Cross, G.W., and Manocha, M.S., 1982, Specificity and methods of transmission of cucumber necrosis virus by Olpidium radicale zoospores, Can. J. Plant Pathol. 4:134–142.

    Article  Google Scholar 

  81. Storey, H.H., 1933, Investigation of the mechanism of the transmission of plant viruses by insect vectors I, Proc. Roy. Soc. B 113:463–485.

    Article  Google Scholar 

  82. Takahashi, Y., and Orlob, G.B., 1969, Distribution of wheat streak mosaic virus-like particles in Aceria tulipae, Virology 38:230–240.

    Article  PubMed  CAS  Google Scholar 

  83. Tamada, T., and Harrison, B.D., 1981, Quantitative studies on the uptake and retention of potato leafroll virus by aphids in laboratory and field conditions, Ann. Appl. Biol. 98:261–276.

    Article  Google Scholar 

  84. Taylor, C.E., and Robertson, W.M., 1969, The location of raspberry ringspot and tomato black ring viruses in the nematode vector, Longidorus elongatus (de Man), Ann. Appl. Biol. 64:233–237.

    Article  Google Scholar 

  85. Taylor, C.E., and Robertson, W.M., 1970, The location of tobacco rattle virus in the nematode vector, Trichodorus pachydermus Seinhorst, J. Gen. Virol. 6:179–182.

    Article  Google Scholar 

  86. Taylor, C.E., and Robertson, W.M., 1974, Electron microscopy evidence for the association of tobacco severe etch virus with the maxillae in Myzus persicae (Sulz), Phytopathol. Z. 80:257–266.

    Article  Google Scholar 

  87. Taylor, C.E., Robertson, W.M., and Roca, F., 1976, Specific association of artichoke Italian latent virus with the odontostyle of its vector Longidorus attenuatus, Nematol. Medit. 4:23–30.

    Google Scholar 

  88. Temmink, J.H.M., 1971, An ultrastructural study of Olpidium brassicae and its transmission of tobacco necrosis virus, Meded. Landbouwhogesch. Wageningen 71:1–135.

    Google Scholar 

  89. Temmink, J.H.M., Campbell, R.N., and Smith, P.R., 1970, Specificity and site of in vitro acquisiton of tobacco necrosis virus by zoospores of Olpidium brassicae, J. Gen. Virol. 9:201–213.

    Article  Google Scholar 

  90. Torrance, L., 1987, Use of enzyme amplification in an ELISA to increase sensitivity of detection of barley yellow dwarf virus in oats and in individual vector aphids, J. Virol. Methods 15:131–138.

    Article  PubMed  CAS  Google Scholar 

  91. Torrance, L., and Jones, R.A.C., 1982, Increased sensitivity of detection of plant viruses obtained by using a fluorogenic substrate in enzyme-linked immunosorbent assay, Ann. Appl. Biol. 101:501–509.

    Article  Google Scholar 

  92. Torrance, L., Plumb, R.T., Lennon, E.A., and Gutteridge, R.A., 1986, A comparison of ELISA with transmission tests to detect barley yellow dwarf virus-carrying aphids, in Jones, R.A.C., and Torrance, L. (eds): Develop¬ments and Applications in Virus Testing, Wellesbourne, Warwick, England, Association of Applied Biologists, pp. 165–176.

    Google Scholar 

  93. Walters, H.J., 1969, Beetle transmission of plant viruses, Adv. Virus Res. 15:339–363.

    Article  PubMed  CAS  Google Scholar 

  94. Whitcomb, R.F., and Black, L.M., 1969, Synthesis and assay of wound-tumor soluble antigen in an insect vector, Virology 15:136–145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Plumb, R.T. (1989). Detecting Plant Viruses in Their Vectors. In: Harris, K.F. (eds) Advances in Disease Vector Research. Advances in Disease Vector Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3292-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3292-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97080-6

  • Online ISBN: 978-1-4612-3292-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics