Skip to main content

Spall and Fragmentation in High-Temperature Metals

  • Chapter
High-Pressure Shock Compression of Solids II

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

The high-velocity impact of a projectile with a stationary structure will lead to the catastrophic fragmentation of the projectile and some portion of the structure during the interaction. The characteristic size and velocity of fragments and the thermodynamic state of fragment debris are directly linked to the intensity of the impact-induced shock waves. Compressional or elastic potential energy introduced by the shock wave is converted to divergent kinetic energy as waves rebound from free surfaces. The magnitude of this kinetic energy determines fragment sizes and velocities. Entropy production during the shock-compression process, on the other hand, leads to elevated temperatures upon shock release, resulting in high-temperature solid, liquid, and liquid-vapor fragment debris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B.C. The Surface Tension of Liquid Metals, in Liquid Metal Chemistry and Physics, S.E. Beer, ed., Marcel Dekker, pp. 151–212 (1972).

    Google Scholar 

  2. Al’tshuler, L.V., Bakanova, A.A., Bushman, A.V., Dudoladov, LP., and Zubarov, V.N. Evaporation of Shock Compressed Lead in Release Waves, Soviet Phys. JETP 46, pp. 980–983 (1977).

    ADS  Google Scholar 

  3. Ashby, M.F. A First Report on Deformation-Mechanism Maps, Acta Met. 20, 887–899 (1972).

    Article  Google Scholar 

  4. Bjork, R.L. The Physics of Hypervelocity Lethality, Int. J. Impact Eng. 5, 129–154(1987).

    Article  Google Scholar 

  5. Duvall, G.E. and Horie, Y. Shock Induced Phase Transitions, in Proceedings of the Fourth Symposium on Detonation, U.S. Naval Ordinance Laboratory, White Oak, Maryland, pp. 248–259 (1965).

    Google Scholar 

  6. Eötvös, R. Pogg. Ann. Phys. Chem. 27, 448 (1886).

    Article  Google Scholar 

  7. Follensbee, P.S., Regazonni, G., and Kocks, U.F. The Transition to Drag Controlled Deformation of Copper at High Strain Rates, in Mechanical Properties at High Strain Rates—1984, Institute of Physics Press, London, 71–80, 1984.

    Google Scholar 

  8. Grady, D.E. Local Inertial Effects in Dynamic Fragmentation, J. Appl. Phys. 53, 322–325 (1982).

    Article  ADS  Google Scholar 

  9. Grady, D.E. The Spall Strength of Condensed Matter, J. Mech. Phys. Solids 3, 353–384 (1988).

    Article  ADS  Google Scholar 

  10. Grady, D.E. and Kipp, M.E. Mechanisms of Dynamic Fragmentation: Factors Governing Fragment Size, Mech. Materials 4, 311–320 (1985).

    Article  Google Scholar 

  11. Grady, D.E. and Kipp, M.E. Experimental and Computational Simulation of the High Velocity Impact of Copper Spheres on Steel Plates, Int. J. Impact Eng. 15, 645–660 (1994)

    Article  Google Scholar 

  12. Grosse, A.V. The Temperature Range of Liquid Metals and an Estimate of Their Critical Constants, J. Inorg. Nucl. Chem. 22, 23–31 (1961).

    Article  Google Scholar 

  13. Holian, K.S. and Burkett, M.W. Sensitivity of Hypervelocity Impact Simulations to Equation of State, Int. J. Impact Eng. 5, 333–341 (1987).

    Article  Google Scholar 

  14. Holian, B.L. and Grady, D.E. Fragmentation by Molecular Dynamics, Phys. Rev. Lett. 60, 1355–1358 (1988).

    Article  ADS  Google Scholar 

  15. Johnson, G.R. and Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, in Proceedings of the Seventh International Symposium on ballistics, The Hague, Netherlands, pp. 541–551 (1983).

    Google Scholar 

  16. Martynyuk, M.M. The Critical Parameters of Metals I, Critical Temperature, Russian J. Phys. Chem. 51, 705–706 (1977).

    Google Scholar 

  17. Trucano, T.G. and Asay, J.R. Effect of Vaporization on Debris Cloud Dynamics, Int. J. Impact Eng. 5, 645–653 (1987).

    Article  Google Scholar 

  18. Young, D.A. and Alder, B.J. Critical Point of Metals from the Van der Waals Equation of State, Phys. Rev. A3, 364–371 (1971).

    ADS  Google Scholar 

  19. Young, D.A. A Soft Sphere Model for Liquid Metals, Lawrence Livermore Laboratory Technical Report UCRL-52352, November, 1977.

    Book  Google Scholar 

  20. Zel’dovich, Y.B. and Raizer, Yu. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena—Volume II, Academic Press, 1967.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Grady, D.E. (1996). Spall and Fragmentation in High-Temperature Metals. In: Davison, L., Grady, D.E., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids II. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2320-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2320-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7501-5

  • Online ISBN: 978-1-4612-2320-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics