Skip to main content

Free Thermal Convection In Low Temperature Helium Gas

  • Chapter
Flow at Ultra-High Reynolds and Rayleigh Numbers
  • 304 Accesses

Abstract

The results of a series of free thermal convection experiments with low temperature helium gas are reviewed. The scaling relations of various physical quantities in different aspect ratio cells are compared. An order parameter for non-Bousnessq effect is introduced and a quantitative theory is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Along a Road to Developed Turbulence, Free thermal Convection in Low Temperature Helium gas, Ph. D Thesis, Xiao-zhong Wu, University of Chicago (1991)

    Google Scholar 

  2. Natural Convection in helium gas, Ph. D thesis, D. C. Threlfall, University of Cambridge (1974);, D. C. Threlfall, J. Fluid Mech 67, 17(1975).

    Google Scholar 

  3. F. Heslot, B. Castaing, A. Libchaber, Phys. Rev. A 36, 5870 (1987).

    Article  ADS  Google Scholar 

  4. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X. Z. Wu, S. Zaleski, G. Zanetti, J. Fluid Mech, 204, 1 (1989)

    Article  ADS  Google Scholar 

  5. M. Sano, X. Z. Wu, A. Libchaber, Phys. Rev. A 40, 6421 (1989).

    Article  ADS  Google Scholar 

  6. J. W. Deardorff, G. E. Willis, G. E. J. Fluid Mech. 23, 337 (1965).

    Article  ADS  Google Scholar 

  7. W. V. R. Malkus, Proc. Roy. Soc. (London) A 225, 185 (1954);

    Article  MathSciNet  ADS  Google Scholar 

  8. W. V. R. Malkus, Proc. Roy. Soc. (London) A 225, 196 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. L. N. Howard, Applied Mechanics, Proc. of the 11 the Int. Cong, of Appl. Mech. Munich (Germany), ed. Gortier H., Springer, Berlin (1966).

    Google Scholar 

  10. B. Shraiman and E. Siggia Phys. Rev. A, 42 3650 (1990).

    Article  ADS  Google Scholar 

  11. A. A. Townsend, J. Fluid. Mech. 5, 209 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. J. Goldstein & S. Tokuda, Int. J. Heat Mass Transfer 23, 738 (1980).

    Article  Google Scholar 

  13. X. Z. Wu, L. Kadanoff, A. Libchaber, M. Sano, Phys. Rev. Lett. 64, 2140 (1990).

    Article  ADS  Google Scholar 

  14. Bolgiano, J. Geophys. Res. 64, 2226 (1959)

    Article  ADS  Google Scholar 

  15. Obukhov, J. Fluid Mech. 13, 77 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  16. B. Castaing, Phys. Rev. Lett. 65, 3209 (1990).

    Article  ADS  Google Scholar 

  17. U. Frisch, M. Vergassola, Europhys. Lett. 14(5), 439 (1991).

    Article  ADS  Google Scholar 

  18. S. Grossmann, D. Lohse, Fourier-Weierstrass mode analysis for thermally driven turbulence, Phys. Rev. Lett. 67, 445 (1991)

    Article  ADS  Google Scholar 

  19. X. Z. Wu and A. Libchaber, Phys. Rev. A 43, 283 (1991)

    Google Scholar 

  20. A. Oberbeck, Ann. Phys. Chem. 7, 271 (1879)

    Article  ADS  Google Scholar 

  21. J. Boussinesq, Theorie Analytique de la Chaleur (Gauthier-Villars, Paris, 1903), Vol. 2

    Google Scholar 

  22. F. H. Busse, J. Fluid Mech. B 30, 625 (1967)

    Article  ADS  MATH  Google Scholar 

  23. E. F. C. Somerscales and T. S. Dougherty, J. Fluid Mech..B 42, 755 (1970).

    Article  ADS  Google Scholar 

  24. G. Ahlers, J. Fluid Mech. B 98, 137 (1980)

    Article  ADS  Google Scholar 

  25. G. Zocchi, Flow Structures in Turbulent Convection, Ph. D Thesis, University of Chicago (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Wu, X.Z. (1998). Free Thermal Convection In Low Temperature Helium Gas. In: Donnelly, R.J., Sreenivasan, K.R. (eds) Flow at Ultra-High Reynolds and Rayleigh Numbers. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2230-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2230-9_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7464-3

  • Online ISBN: 978-1-4612-2230-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics