Skip to main content

Reflection Geometry

  • Chapter
  • 1317 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

In this chapter, we examine techniques for recovering the illuminant direction, the object shape and material photometric invariants using spectral reflectance images captured from a single view. In the first part of the chapter, we provide a unified approach to the shape and photometric invariant recovery problem. This encompasses previous work in the areas of shape from shading (SFS) and photometric stereo as applied to grey-scale, trichromatic, multispectral and hyperspectral images. The shape recovery problem is cast as a minimisation of a cost functional that combines the data error with respect to a general reflectance model, the surface integrability, the spectral smoothness error of the refractive index and the spatial smoothness error of other photometric parameters. This general image irradiance equation extends reflectance models based on the Fresnel reflection theory in the spectral domain to those based upon a general set of parameters. In the second part of the chapter, we review methods for the estimation of a single light source direction from a single image. The literature in this area is highly relevant to the recovery for shape and photometric parameters as the illuminant direction governs the shading of the image irradiance. Moreover, many of these methods can be employed as a preceding step for shape recovery, while others involve the simultaneous recovery of source, shape and material reflectance properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beckmann, P., & Spizzichino, A. (1963). The scattering of electromagnetic waves from rough surfaces. New York: Pergamon.

    MATH  Google Scholar 

  • Brooks, M. J., & Horn, B. K. P. (1985). Shape and source from shading. In International joint conference on artificial intelligence (pp. 932–936).

    Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.

    Article  Google Scholar 

  • Chojnacki, W., Brooks, M. J., & Gibbins, D. (1994). Revisiting Pentland’s estimator of light source direction. Journal of the Optical Society America A, 11(1), 118–124.

    Article  Google Scholar 

  • Dupuis, P., & Oliensis, J. (1992). Direct method for reconstructing shape from shading. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 453–458).

    Google Scholar 

  • Frankot, R. T., & Chellappa, R. (1988). A method of enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(10), 439–451.

    Article  Google Scholar 

  • Hara, K., Nishino, K., & Ikeuchi, K. (2005). Light source position and reflectance estimation from a single view without the distant illumination assumption. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 493–505.

    Article  Google Scholar 

  • Hecht, E. (2002). Optics (4th ed.). Reading: Addison-Wesley.

    Google Scholar 

  • Horn, B. K. P., & Brooks, M. J. (1986). The variational approach to shape from shading. CVGIP, 33(2), 174–208.

    MATH  Google Scholar 

  • Horn, B. K. P., & Brooks, M. J. (1989). Shape from shading. Cambridge: MIT Press.

    Google Scholar 

  • Huynh, C. P., & Robles-Kelly, A. (2010). A solution of the dichromatic model for multispectral photometric invariance. International Journal of Computer Vision, 90(1), 1–27.

    Article  Google Scholar 

  • Ikeuchi, K., & Horn, B. K. P. (1981). Numerical shape from shading and occluding boundaries. Artificial Intelligence, 17(1–3), 141–184.

    Article  Google Scholar 

  • Johnson, M. K., & Farid, H. (2005). Exposing digital forgeries by detecting inconsistencies in lighting. In Proceedings of the 7th workshop on multimedia and security (pp. 1–10).

    Google Scholar 

  • Kimmel, R., & Bruckstein, A. M. (1995). Tracking level sets by level sets: a method for solving the shape from shading problem. Computer Vision and Image Understanding, 62(2), 47–48.

    Article  Google Scholar 

  • Knill, D. C. (1990). Estimating illuminant direction and degree of surface relief. Journal of the Optical Society America A, 7(4), 759–775.

    Article  MathSciNet  Google Scholar 

  • Lee, C.-H., & Rosenfeld, A. (1985). Improved methods of estimating shape from shading using the light source coordinate system. Artificial Intelligence, 26(2), 125–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

    Article  MathSciNet  MATH  Google Scholar 

  • Migita, T., Ogino, S., & Shakunaga, T. (2008). Direct bundle estimation for recovery of shape, reflectance property and light position. In Proceedings of the 10th European conference on computer vision: part III (pp. 412–425).

    Google Scholar 

  • Nillius, P., & Eklundh, J. (2001). Automatic estimation of the projected light source direction.

    Google Scholar 

  • Nishino, K., & Nayar, S. (2004). Eyes for relighting. ACM Transactions on Graphics, 23(3), 704–711.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. (2000). Numerical optimization. Berlin: Springer.

    Google Scholar 

  • Pentland, A. P. (1982). Finding the illuminant direction. Journal of the Optical Society of America, 72(4), 448–455.

    Article  Google Scholar 

  • Powell, M., Sarkar, S., & Goldgof, D. (2001). A simple strategy for calibrating the geometry of light sources. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 1022–1027.

    Article  Google Scholar 

  • Prados, E., & Faugeras, O. (2003). Perspective shape from shading and viscosity solutions. In IEEE international conference on computer vision (Vol. II, pp. 826–831).

    Chapter  Google Scholar 

  • Riley, K., Hobson, M., & Bence, S. (2006). Mathematical methods for physics and engineering. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sato, I., Sato, Y., & Ikeuchi, K. (1999). Illumination distribution from shadows. In Computer vision and pattern recognition (pp. 1306–1312).

    Google Scholar 

  • Sato, I., Sato, Y., & Ikeuchi, K. (2001). Stability issues in recovering illumination distribution from brightness in shadows. In Computer vision and pattern recognition (pp. 400–407).

    Google Scholar 

  • Schnieders, D., Wong, K.-Y. K., & Dai, Z. (2010). Polygonal light source estimation. In Asian conference on computer vision (pp. 96–107).

    Google Scholar 

  • Shafer, S. A. (1985). Using color to separate reflection components. Color Research and Application, 10(4), 210–218.

    Article  Google Scholar 

  • Smith, G. B. (1982). The recovery of surface orientation from image irradiance. In Proceedings of the DARPA image understanding workshop, Palo Alto, CA, USA (pp. 132–141).

    Google Scholar 

  • Strat, T. (1979). A numerical method for shape-from-shading from a single image. Master’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  • Tagare, H. D., & deFigueiredo, R. J. P. (1991). A theory of photometric stereo for a class of diffuse non-Lambertian surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2), 133–152.

    Article  Google Scholar 

  • Terzopoulos, D. (1983). Multilevel computational processes for visual surface reconstruction. Computer Vision, Graphics and Image Understanding, 24, 52–96.

    Article  Google Scholar 

  • Torrance, K., & Sparrow, E. (1967). Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57(9), 1105–1112.

    Article  Google Scholar 

  • Vernold, C. L., & Harvey, J. E. (1998). A modified Beckmann–Kirchoff scattering theory for non-paraxial angles. In Proceedings of the SPIE: Vol. 3426. Scattering and surface roughness (pp. 51–56).

    Chapter  Google Scholar 

  • Wang, Y., & Samaras, D. (2002). Estimation of multiple illuminants from a single image of arbitrary known geometry. In European conference on computer vision (pp. 272–288).

    Google Scholar 

  • Weinshall, D. (1990). The shape of shading and the direction of illumination from shading on occluding contours. Artificial intelligence memo 1264; center for biological information processing memo 60.

    Google Scholar 

  • Wolff, L. B. (1994). Diffuse-reflectance model for smooth dielectric surfaces. Numbers, 11, 2956–2968.

    Google Scholar 

  • Wong, K.-Y. K., Schnieders, D., & Li, S. (2008). Recovering light directions and camera poses from a single sphere. In European conference on computer vision (pp. 631–642).

    Google Scholar 

  • Woodham, R. (1980). Photometric method for determining surface orientation from multiple images. Optical Engineering, 19(1), 139–144.

    Article  Google Scholar 

  • Woodham, R. J. (1977). A cooperative algorithm for determining surface orientation from a single view (pp. 635–641).

    Google Scholar 

  • Worthington, P. L., & Hancock, E. R. (1999). New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12), 1250–1267.

    Article  Google Scholar 

  • Zhang, Y., & Yang, Y.-H. (2001). Multiple illuminant direction detection with application to image synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(8), 915–920.

    Article  Google Scholar 

  • Zheng, Q., & Chellappa, R. (1991). Estimation of illuminant direction, albedo, and shape from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 680–702.

    Article  Google Scholar 

  • Zhou, W., & Kambhamettu, C. (2002). Estimation of illuminant direction and intensity of multiple light sources. In European conference on computer vision (pp. 206–220).

    Google Scholar 

  • Zhou, W., & Kambhamettu, C. (2008). A unified framework for scene illuminant estimation. Image and Vision Computing, 26(3), 415–429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Robles-Kelly, A., Huynh, C.P. (2013). Reflection Geometry. In: Imaging Spectroscopy for Scene Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4652-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4652-0_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4651-3

  • Online ISBN: 978-1-4471-4652-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics