Skip to main content

Effects of Hyperinflation on Respiratory Muscle Function

  • Conference paper
Chronic Pulmonary Hyperinflation

Part of the book series: Current Topics in Rehabilitation ((CURRENT REHAB))

  • 66 Accesses

Abstract

Although the effects of hyperinflation on the expiratory muscle are still poorly understood, it is generally accepted that it adversely affects the function of inspiratory muscle,1–2 due to shortening of these muscles which places them at a disadvantageous portion of their force-length relationship. Moreover, changes in diaphragmatic geometry,3 changes in the mechanical arrangement between the two parts of diaphragm,4 and changes in diaphragm-rib cage interaction occur.5 Much less, however, is presently known about the effects of hyperinflation on the extradiaphragmatic musculature, which contributes significantly to respiratory acts, even to quiet breathing in man,6–7 as well as in experimental animals.8–9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Decramer M., Demedts M., Rochette F., Billiet L.: Maximal transrespiratory pressures in obstructive lung disease. Bull. Eur. Physiopathol. Respir. 1980; 16:479–490

    PubMed  CAS  Google Scholar 

  2. Rochester D.F., Braun N.M.T.: Determinants of maximal inspiratory pressure in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1985; 132:42–47

    PubMed  CAS  Google Scholar 

  3. Roussos C., Macklem P.T.: The respiratory muscles. New Engl. J. Med. 1982; 307:786–797.

    Article  PubMed  CAS  Google Scholar 

  4. Decramer M., De Troyer A., Kelly S., Macklem P.T.: Mechanical arrangement of costal and crural diaphragms in dogs. J. Appl. Physiol. 1984; 56:1484–1490

    PubMed  CAS  Google Scholar 

  5. Zocchi L., Garzaniti N., Newman S., Macklem PT.: Effect of hyperinflation and equalization of abdominal pressure on diaphragmatic action. J. Appl. Physiol. 1987; 62:1655–1664

    Article  PubMed  CAS  Google Scholar 

  6. De Troyer A., Sampson M.: Activation of the parasternal intercostals during breathing efforts in human subjects. J. Appl. Physiol. 1982; 52:524–529

    PubMed  Google Scholar 

  7. De Troyer A., Estenne M.: Coordination between rib cage muscles and diaphragm during quiet breathing in humans. J. Appl. Physiol. 1984; 57:899–906

    PubMed  Google Scholar 

  8. Decramer M., De Troyer A. Respiratory changes in parasternal intercostal length. J. Appl. Physiol. 1984;57:1254–1260

    PubMed  CAS  Google Scholar 

  9. De Troyer A., Ninane V.: The triangularis sterni: a primary muscle of breathing in the dog. J. Appl. Physiol. 1986;60:14–21

    Article  PubMed  Google Scholar 

  10. Supinsky G.S., Kelsen S.G.: Effect of elastase-induced emphysema on the force generating of the diaphragm. J. Clin. Invest. 1982; 70:978–988

    Article  Google Scholar 

  11. Farkas G.A., Roussos C: Adaptability of the hamster diaphragm to exercise and/or emphysema. J. Appl. Physiol. 1982; 53:1263–1272

    Article  PubMed  CAS  Google Scholar 

  12. Farkas G.A., Roussos C: Diaphragm in emphysematous hamsters: sarcomere adaptability. J. Appl. Physiol. 1983; 54:1635–1640

    PubMed  CAS  Google Scholar 

  13. Oliven A., Supinsky G.S., Kelsen S.G.: Functional adaptation of diaphragm to chronic hyperinflation in emphysematous hamsters. J. Appl. Physiol. 1986; 60:225–231

    PubMed  CAS  Google Scholar 

  14. Arora N.S., Rochester D.F.: COPD and human diaphragm muscle dimensions. Chest 1987; 91:719–724

    Article  PubMed  CAS  Google Scholar 

  15. Decramer M., Jiang T.X., Reid M.B., Kelly S., Macklem P.T., Demedts M.: Relationship between diaphragm length and abdominal dimensions. J. Appl. Physiol. 1986; 61:1815–1820

    PubMed  CAS  Google Scholar 

  16. Decramer M., Jiang T.X., Demedts M.: Effects of acute hyperinflation on inspiratory muscle. J. Appl. Physiol. 1987; 63:1493–1498

    PubMed  CAS  Google Scholar 

  17. Jiang T.X., De Schepper K., Demedts M., Decramer M.: Effects of acute hyperinflation on the mechanical effectiveness of the parasternal intercostals. Am. Rev. Respir. Dis. 1989; 139 (2): 522–528

    Article  PubMed  CAS  Google Scholar 

  18. Farkas G.A., Decramer M., Rochester D.F., De Troyer A.: Contractile properties of intercostal muscles and their functional significance. J. Appl. Physiol. 1985; 59:528–535

    PubMed  CAS  Google Scholar 

  19. Leenaerts P., Demedts M., Decramer M.: Respiratory changes in parasternal intercostal intramuscular pressure. (abstract). Fed. Proc. 1987; 46:819

    Google Scholar 

  20. Farkas G.A., Rochester D.F.: Contractile characteristics and operating lengths of canine neck inspiratory muscles. J. Appl. Physiol. 1986; 61:220–226

    PubMed  CAS  Google Scholar 

  21. Goldman M.D., Loh L., Sears T.A.: The respiratory activity of human levator costae muscles and its modification by posture. J. Physiol. (Lond.) 1985; 362:189–204

    CAS  Google Scholar 

  22. Gilmartin J., Ninane V., De Troyer A. : Abdominal muscle use during breathing in the anesthetized dog. Respir. Physiol. 1987; 70:159–171

    PubMed  CAS  Google Scholar 

  23. Rinqvist T.: The ventilatory capacity in healthy subjects. Scand. J. Clin. Lab. Invest. 1966; 18(Supplement 88):1–113

    Google Scholar 

  24. Rahn H., Otis A.B., Chadwick C.A, Fenn W.: The pressure volume diagram of the thorax and the lung. Am. J. Physiol. 1946; 146:161–178

    PubMed  CAS  Google Scholar 

  25. Camus P., Desmeules M. J.: Chest wall movements and breathing pattern at different lung volumes (abstract). Chest 1982; 243

    Google Scholar 

  26. Wolfson D.A., Strohl K.P., Dimarco A.F., Altose M.D.: Effects of an increase in end-expiratory volume on the pattern of thoracoabdominal movement. Respir. Physiol. 1983; 53:273–283

    Article  PubMed  CAS  Google Scholar 

  27. Sharp J.T., Goldberg N.B., Druz W.S., Fishman H.C, Danon J.: Thoracoabdominal motion in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1977; 115:47–56

    PubMed  CAS  Google Scholar 

  28. Gilmartin J.J., Gibson G.J.: Abnormalities of chest wall motion in patients with chronic airflow obstruction. Thorax 1984; 39:264–271

    Article  PubMed  CAS  Google Scholar 

  29. Gilmartin J.J., Gibson G.J.: Mechanisms of paradoxical rib cage motion in patients with obstructive pulmonary disease. Am. Rev. Respir. Dis. 1986; 134: 683–687

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Italia

About this paper

Cite this paper

Decramer, M. (1991). Effects of Hyperinflation on Respiratory Muscle Function. In: Grassino, A., Rampulla, C., Ambrosino, N., Fracchia, C. (eds) Chronic Pulmonary Hyperinflation. Current Topics in Rehabilitation. Springer, London. https://doi.org/10.1007/978-1-4471-3782-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3782-5_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3784-9

  • Online ISBN: 978-1-4471-3782-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics