Skip to main content

Anatomy and Function of the Pelvic Floor

  • Chapter
Pelvic Floor Re-education

Abstract

Clinicians have traditionally divided the lower urinary tract into the bladder, the vesical neck, and the urethra (Fig. 1). The bladder consists of the detrusor muscle and its interior epithelium, and the trigone (an embryologically separate structure lying on the dorsal wall of the bladder). The urethra is a multilayered muscular tube which extends below the bladder. It has its own specialized mucosal and vascular lining. The vesical neck is the region of the bladder base where the urethra enters the bladder. Because it has special characteristics and because the urethral lumen is actually surrounded by the bladder as it traverses the bladder wall, the vesical neck will be considered separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Constantinou CE, Govan DE (1982) Spatial distribution and timing of transmitted and reflexly generated urethral pressures in healthy women. J Urol 127: 964–969

    PubMed  CAS  Google Scholar 

  • DeLancey JOL (1986) Correlative study of paraurethral anatomy. Obstet Gynecol 68: 91–97

    PubMed  CAS  Google Scholar 

  • DeLancey JOL (1988) Structural aspects of the extrinsic continence mechanism. Obstet Gynecol 72: 296–301

    PubMed  CAS  Google Scholar 

  • DeLancey JOL (1989) The pubovesical ligament, a separate structure from the urethral supports (“pubo-urethral ligaments”). Neurol Urodynam 8: 53–61

    Article  Google Scholar 

  • DeLancy JOL (1992) Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol 166: 1717–1728

    Google Scholar 

  • Dickinson RL (1889) Studies of the levator ani muscle. Am J Dis Worn 22: 897–917

    Google Scholar 

  • Elbadawi A (1988) Neuromuscular mechanisms of micturition. In: Yalla SV, McGuire EJ, Elbadawi A, Blaivas JG (eds) Neurology and urodynamics: principles and practice Macmillan, New York, pp 3–35

    Google Scholar 

  • Enhorning G (1961) Simultaneous recording of the intravesical and intraurethral pressure. Acta Obstet Gynecol Scand 276 (suppl): 1–69

    Google Scholar 

  • Gosling JA, Dixon JS, Critchley HOD, Thompson SA (1981) A comparative study of the human external sphincter and periurethral levator ani muscles. Br J Urol 53: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Hilton P, Stanton SL (1983) Urethral pressure measurement by microtransducer: the results in symptom-free and in those with genuine stress incontinence. Br J Obstet Gynaecol 90: 919–933

    Article  PubMed  CAS  Google Scholar 

  • Huisman AB (1983) Aspects on the anatomy of the female urethra with special relation to urinary continence. Contrib Gynecol Obstet 10: 1–31

    PubMed  CAS  Google Scholar 

  • Huffman J (1948) Detailed anatomy of the paraurethral ducts in the adult human female. Am J Obstet Gynecol 55: 86101

    Google Scholar 

  • Jeffcoate TNA, Roberts H (1952) Observations on stress incontinence of urine. Am J Obstet Gynecol 64: 721–738

    PubMed  CAS  Google Scholar 

  • Kelly HA (1928) Gynecology. D. Appleton and Co, New York, pp 265–266

    Google Scholar 

  • Lawson JO (1974) Pelvic anatomy. I. Pelvic floor muscles. Ann R Coll Surg Engl 54: 244–252

    PubMed  CAS  Google Scholar 

  • McGuire EJ (1981) Urodynamic findings in patients after failure of stress incontinence operations. Prog Clin Biol Res 78: 351–360

    PubMed  CAS  Google Scholar 

  • Muellner SR (1951) Physiology of micturition. J Urol 65 (5): 805–810

    PubMed  CAS  Google Scholar 

  • Noll LE, Hutch JA (1969) The SCIPP line-an aid in interpreting the voiding lateral cystourethrogram. Obstet Gynecol 33: 680–689

    PubMed  CAS  Google Scholar 

  • Oelrich TM (1983) The striated urogenital sphincter muscle in the female. Anat Rec 205: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Paramore RH (1908) The supports-in-chief of the female pelvic viscera. J Obstet Gynaecol Br Emp 13: 391–409

    Article  Google Scholar 

  • Parks AG, Porter NH, Melzak J (1962) Experimental study of the reflex mechanism controlling muscles of the pelvic floor. Dis Colon Rectum 5: 407–414

    Article  PubMed  CAS  Google Scholar 

  • Range RL, Woodburn RT (1964) The gross and microscopic anatomy of the transverse cervical ligaments. Am J Obstet Gynecol 90: 460–467

    PubMed  CAS  Google Scholar 

  • Reid GC, DeLancey JOL, Hopkins MP, Roberts JA, Morley, GW (1990) Urinary incontinence following radical vulvectomy. Obstet Gynecol 75: 852–858

    PubMed  CAS  Google Scholar 

  • Richardson AC, Edmonds PB, Williams NL (1981) Treatment of stress urinary incontinence due to paravaginal fascial defect. Obstet Gynecol 57: 357–362

    PubMed  CAS  Google Scholar 

  • Smith ARB, Hosker GL, Warrell DW (1989a) The role of pudendal curve damage in the aetiology of genuine stress incontinence in women. Br J Obstet Gynaecol 96: 29–32

    Article  PubMed  CAS  Google Scholar 

  • Smith ARB, Hosker GL, Warrell DW (1989b) The role of partial denervation of the pelvic floor in the aetiology of genitourinary prolapse and stress incontinence of urine: a neurophysiological study. Br J Obstet Gynaecol 96: 24–28

    Article  PubMed  CAS  Google Scholar 

  • Snooks SJ, Badenoch DF, Tiptaft RC, Swash M (1985) Perineal nerve damage in genuine stress urinary incontinence. An elecrophysiological study. Br J Urol 57: 477–426

    Google Scholar 

  • Westby M, Asmussen M, Ulmsten U (1982) Location of maximum intrurethral pressure related to urogenital diaphragm in the female subject as studied by simultaneous urethrocystometry and voiding urethrocystography. Am J Obstet Gynecol 144: 408–412

    PubMed  CAS  Google Scholar 

  • Anderson RS (1984) A Neurogenic element to urinary genuine stress incontinence. Br J Obstet Gynaecol 91: 412415

    Google Scholar 

  • Bradley WE (1978) Innervation of the male urinary bladder. Urol Clin N Am 5: 279

    CAS  Google Scholar 

  • Brindley GS, Polkey CE, Rushton DN (1982) Sacral anterior root stimulators for bladder control in paraplegia. Paraplegia 20: 365–381

    Article  PubMed  CAS  Google Scholar 

  • De Araujo CG, Schmidt RA, Tanagho EA (1982) Neural pathway to lower urinary tract identified by retrograde axonal transport of horseradish peroxidase. Urology 19: 290

    Article  PubMed  Google Scholar 

  • Donker PJ, Droes JT, Van Ulden BM (1976) Anatomy of the musculature and innervation of the bladder and the urethra. In: Williams DI, Chisholm GD (eds) Scientific foundations in urology. Heinemann, Chicago, vol 2, chapt 5, p. 32

    Google Scholar 

  • Dubowitz V (ed) (1970) The role of histochemistry in muscle disease. In: Mod Trends Neurol 5: 189–208

    Google Scholar 

  • Elbadawi A, Schenk EA (1974) A new theory of the innervation of bladder musculature. Part 4. Innervation of the vesicourethral junction and external sphincter. J Urol 111: 613–615

    Google Scholar 

  • Gilpin SA, Gosling JA, Smith AR, et al. (1989) The pathogenesis of genitourinary prolapse and stress incontinence of urine. A histological and histochemical study. Br J Obst Gynaecol 96: 15–23

    Google Scholar 

  • Gosling JA (1985) The structure of the female lower urinary tract and pelvic floor. Urol Clin N Am 12: 207

    CAS  Google Scholar 

  • Gosling JA, Dixon JS (1975) The structure and innervation of smooth muscle in the wall of the bladder neck and proximal urethra. Br J Urol 47: 549–556

    Article  PubMed  CAS  Google Scholar 

  • Gosling JA, Dixon JS, Humpherson JR (1982) Gross and microscopic anatomy of the urethra I and II. In: Gosling JA, Dixon JS, Humpherson JR (eds) Functional anatomy of the urinary tract. University Park Press, Baltimore, chapts 4 and 5

    Google Scholar 

  • Henry MM, Parks AG, Swash M (1982) The pelvic floor musculature in the descending perineum syndrome. Br J Surg 69: 470–472

    Article  PubMed  CAS  Google Scholar 

  • Jünemann KP, Lue TF, Schmidt RA, et al. (1988) Clinical significance of sacral and pudendal nerve anatomy. J Urol 139: 74–80

    Google Scholar 

  • Morrison FB (1987) Neural connections between the lower urinary tract and the spinal cord. In: Torrens M, Morrison FB (eds) The physiology of the lower urinary tract. Springer, London, Berlin, Heidelberg, New York, Paris, Tokyo, pp 53–85

    Google Scholar 

  • Neill ME, Swash M (1980) Increased motor unit fibre density in the external anal sphincter muscle in anorectal incontinence: a single fibre EMG study. J Neurol Neurosurg Psychiatry 43: 343–347

    Article  PubMed  CAS  Google Scholar 

  • Neill ME, Parks AG, Swash M (1981) Physiological studies of anal sphincter musculature in faecal incontinence and rectal prolapse. Br J Surg 68: 531–536

    Article  PubMed  CAS  Google Scholar 

  • Parks AG, Swash M, Urich H (1977) Sphincter denervation in anorectal incontinence and rectal prolapse. Gut 18: 656655

    Google Scholar 

  • Schmidt RA (1983) Neural prostheses and bladder control. Eng Med Biol 2: 31

    Article  Google Scholar 

  • Smith AR, Hosker GL, Warrel DW (1989a) The role of partial denervation of the pelvic floor in the aetiology of genitourinary prolapse and stress incontinence of urine. A neurophysiological study. Br J Obstet Gynaecol 96: 24–28

    Google Scholar 

  • Smith AR, Hosker GL, Warrell DW (1989b) The role of pudendal nerve damage in the aetiology of genuine stress incontinence in women. Br J Obstet Gynaecol 96: 29–32

    Article  PubMed  CAS  Google Scholar 

  • Snooks SJ, Setchell M, Swash M, et al. (1984) Injury to innervation of pelvic floor sphincter musculature in childbirth. Lancet 8: 546–550

    Article  Google Scholar 

  • Stalberg E, Trontelj JV (1979) Single fibre electromyography. Miravalle Press, Old Woking, Surrey

    Google Scholar 

  • Sunderland Sir S (1978) Nerves and nerve injuries, 2nd edn. Churchill Livingstone, Edinburgh, London, New York

    Google Scholar 

  • Tanagho EA, Meyers FH, Smith DR (1969) Urethral resistance: its components and implications. II. Striated muscle component. Invest Urol 7: 195–205

    Google Scholar 

  • Tanagho EA, Schmidt RA, de Araujo CG (1982) Urinary striated sphincter: What is its nerve supply? Urology 20: 415–421

    Article  PubMed  CAS  Google Scholar 

  • Thüroff JW, Bazeed MA, Schmidt RA, Tanagho EA (1982a) Mechanisms of urinary continence: an animal model to study urethral responses to stress conditions. J Urol 127: 1202–1206

    PubMed  Google Scholar 

  • Thüroff JW, Bazeed MA, Schmidt RA, Luu DH, Tanagho EA (1982b) Regional topography of spinal cord neurons innervating pelvic floor muscles and bladder neck in the dog: a study by combined horseradish peroxidase histochemistry and autoradiography. Urol Int 37: 110–120

    Article  PubMed  Google Scholar 

  • Willis Jr WD, Grossman RG (1981) Neuroanatomical and neurophysiological principles basic to clinical neuroscience. In: Medical Neurobiology, 3rd edn. C. V. Mosby, St. Louis, Toronto, London, pp 1–48

    Google Scholar 

  • Bearsiek F, Parks AG, Swash M (1979) Pathogenesis of anorectal incontinence. A histometric study of the anal sphincter musculature. J Neurol Sci 342: 111–127

    Google Scholar 

  • Berglas B, Rubin IC (1953) Histologic study of the pelvic connective tissue. Surg Gynaecol Obstet 97: 277–289

    CAS  Google Scholar 

  • Brooke MH, Kaiser KK (1970) Muscle fibre types: how many and what kind? Arch Neurol (Chic) 23: 369–379

    Article  CAS  Google Scholar 

  • Constantinou C, Govan DE (1982) Spatial distribution and timing of transmitted and reflexly generated urethral pressures in healthy women. J Urol 127: 964–967

    PubMed  CAS  Google Scholar 

  • Critchley HOD, Dixon JS, Gosling JA (1980) Comparative study of the peri-urethral and peri-anal parts of the human levator ani muscle. Urol Int 35: 226–232

    Article  PubMed  CAS  Google Scholar 

  • DeLancey JOL, Starr RA (1990) Histology of the connection between the vagina and levator ani muscles. J Reprod Med 35: 765–771

    PubMed  CAS  Google Scholar 

  • Dubowitz V (1970) The role of histochemistry in muscle disease. In: Williams D (ed) Modern trends in neurology. Butterworth, London, vol 5, pp 189–208

    Google Scholar 

  • Gilpin SA, Gosling JA, Smith ARB, Warrell DW (1989) The pathogenesis of genito-urinary prolapse and stress incontinence of urine. A histological and histochemical study. Br J Obstet Gynaecol 96: 15–23

    Google Scholar 

  • Gosling JA, Dixon JS, Critchley HOD, Thompson SA (1981) A comparative study of the human external sphincter and peri-urethral levator ani muscles. Br J Urol 53: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Guth L, Samaha FJ (1970) Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol 28: 365367

    Google Scholar 

  • Guth L, Yellin H (1971) The dynamic nature of the so-called ‘fibre types’ of mammalian skeletal muscle. Exp Neurol 31: 277–300

    Article  Google Scholar 

  • Koelbl H, Strassegger H, Riss PA, Gruber H (1989) Morphologic and functional aspects of pelvic floor muscles in patients with pelvic relaxation and genuine stress incontinence. Obstet Gynecol 74: 789–795

    PubMed  CAS  Google Scholar 

  • Makinen J, Sonderstrom K-O, Kiilhoma P, Hirvonen T (1986) Histological changes in the vaginal connective tissue of patients with and without uterine prolapse. Arch Gynecol 239: 17–20

    Article  PubMed  CAS  Google Scholar 

  • Norton P, Baker J, Sharp H, Warenski J (1990). Genitourinary prolapse. Relationship with joint mobility. Neurourol Urodynam 9: 321–322

    Google Scholar 

  • Padykula HA, Herman (1955) The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem 3: 170–195

    Article  CAS  Google Scholar 

  • Parks AG, Swash M, Ulrich H (1977) Sphincter denervation in ano-rectal incontinence and rectal prolapse. Gut 18: 656–665

    Article  PubMed  CAS  Google Scholar 

  • Smith ARB, Hosker GL, Warrell DW (1989) The role of partial denervation of the pelvic floor in the aetiology of genitourinary prolapse and stress incontinence of urine. A neurophysiological study. Br J Obstet Gynaecol 96: 24–28

    Google Scholar 

  • Ulmsten U, Ekman G, Giertz G, Malmstrom A (1987) Different biochemical composition of connective tissue in continent and stress incontinent women. Acta Obstet Gynecol Scand 66: 455–457

    Article  PubMed  CAS  Google Scholar 

  • Wilson PM (1973a) Understanding the pelvic floor. S Afr Med J 47: 1150–1167

    PubMed  CAS  Google Scholar 

  • Wilson PM (1973b) Some observations on pelvic floor evolution in primates. S Afr Med J 47: 1203–1209

    PubMed  CAS  Google Scholar 

  • Kuhn T (1974) The structure of scientific revolutions, 3rd edn. University of Chicago Press, Chicago

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag London

About this chapter

Cite this chapter

DeLancey, J., Jünemann, K., Thüroff, J., Dixon, J., Gosling, J., Norton, P. (1994). Anatomy and Function of the Pelvic Floor. In: Pelvic Floor Re-education. Springer, London. https://doi.org/10.1007/978-1-4471-3569-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3569-2_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76145-7

  • Online ISBN: 978-1-4471-3569-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics