Skip to main content

Linear Hydrocarbon Producing Pathways in Plants, Algae and Microbes

  • Chapter
  • First Online:
Sustainable Bioenergy and Bioproducts

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Many different types of organisms synthesize hydrocarbons in nature, but for all their ubiquity, the biochemical and genetic bases for how these compounds are synthesized are not well understood. Several biochemical mechanisms have been proposed for non-isoprenoid hydrocarbon biosynthesis, most notably the head-to-head condensation and elongation-decarboxylation pathways from fatty acid precursors, but definitive characterization of these and other possible mechanisms have largely remained elusive. This review explores the possible metabolic pathways that various plant, algal, and microbial species use to synthesize linear hydrocarbons and the genetic factors that are involved in regulating those pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albro PW, Dittmer JC (1969) Biochemistry of long-chain nonisoprenoid hydrocarbons.3. metabolic relationship of long-chain fatty acids and hydrocarbons and other aspects of hydrocarbon metabolism in Sarcina lutea. Biochemistry 8:1913

    Article  Google Scholar 

  2. Albro PW, Dittmer JC (1969) The biochemistry of long-chain, nonisoprenoid hydrocarbons. I. Characterization of the hydrocarbons of Sarcina lutea and the isolation of possible intermediates of biosynthesis. Biochemistry 8:394–404

    Article  Google Scholar 

  3. Barghoorn ES (1971) The oldest fossils. Sci Am 224:30

    Article  Google Scholar 

  4. Beller HR, Goh EB, Keasling JD (2009) Genes involved in long-chain alkene biosynthesis in micrococcus luteus. Appl Environ Microbiol 76:1212–1223

    Article  Google Scholar 

  5. Buckner JS, Kolattukudy PE (1973) Specific inhibition of alkane synthesis with accumulation of very long-chain compounds by dithioerythritol, dithiothreitol, and mercaptoethanol in Pisum-Sativum. Arch Biochem Biophys 156:34–45

    Article  Google Scholar 

  6. Calvin M (1969) Chemical evolution; molecular evolution towards the origin of living systems on the earth and elsewhere. Oxford University Press, New York

    Google Scholar 

  7. Cane RF (1969) Coorongite and the genesis of oil shale. Geochim Cosmochim Acta 33:257

    Article  Google Scholar 

  8. Cheesbrough TM, Kolattukudy PE (1984) Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum-Sativum. In: Proceedings of the national academy of sciences of the United States of America-biological sciences, vol 81. pp 6613–6617

    Google Scholar 

  9. Dennis M, Kolattukudy PE (1992) A Cobalt-Porphyrin enzyme converts a fatty aldehyde to a Hydrocarbon and Co. Proc Natl Acad Sci USA 89:5306–5310

    Article  Google Scholar 

  10. Dennis MW, Kolattukudy PE (1991) Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. Arch Biochem Biophys 287:268

    Article  Google Scholar 

  11. Han J, Calvin M (1969) Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci USA 64:436–443

    Article  Google Scholar 

  12. Hannoufa A, Mcnevin J, Lemieux B (1993) Epicuticular Waxes of Eceriferum Mutants of Arabidopsis-Thaliana. Phytochemistry 33:851–855

    Article  Google Scholar 

  13. Hansen JD, Pyee J, Xia Y, Wen TJ, Robertson DS, Kolattukudy PE, Nikolau BJ, Schnable PS (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100

    Article  Google Scholar 

  14. Heath RJ, Rock CO (2002) The Claisen condensation in biology. Nat Prod Rep 19:581–596

    Article  Google Scholar 

  15. Howard R, Howard RW (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371

    Article  Google Scholar 

  16. Kalacheva GS, Zhila NO, Volova TG, Gladyshev MI (2002) The effect of temperature on the lipid composition of Botryococcus. Mikrobiologiia 71:336–344

    Google Scholar 

  17. Kaneda T (1968) Biosynthesis of long-chain hydrocarbons. 2. Studies on biosynthetic pathway in tobacco. Biochemistry 7:1194–1202

    Article  Google Scholar 

  18. Kolattukudy PE (1966) Biosynthesis of wax in Brassica oleracea. Relation of fatty acids to wax. Biochemistry 5:2265–2275

    Article  Google Scholar 

  19. Kolattukudy PE (1967) Mechanisms of synthesis of waxy esters in Broccoli (Brassica Oleracea). Biochemistry 6:2705–2717

    Article  Google Scholar 

  20. Kolattukudy PE (1968) Tests whether a head to head condensation mechanism occurs in the biosynthesis of n-hentriacontane, the paraffin of spinach and pea leaves. Plant Physiol 43:1466

    Article  Google Scholar 

  21. Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  Google Scholar 

  22. Markey SP, Tornabene TG (1971) Characterization of branched monounsaturated hydrocarbons of Sarcina lutea and Sarcina flava. Lipids 6:190–195

    Article  Google Scholar 

  23. Meinschein WG (1959) Origin of petroleum. The American association of petroleum geologists bulletin 43:925

    Google Scholar 

  24. Park MO (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. Biochem J 187:1426–1429 Feb 2005

    Google Scholar 

  25. Perera MADN, Qin WM, Yandeau-Nelson M, Fan L, Dixon P, Nikolau BJ (2010) Biological origins of normal-chain hydrocarbons: a pathway model based on cuticular wax analyses of maize silks. Plant J 64:618–632

    Article  Google Scholar 

  26. Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430

    Article  Google Scholar 

  27. Riezman H (2007) The long and short of fatty acid synthesis. Cell 130:587–588

    Article  Google Scholar 

  28. Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  Google Scholar 

  29. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial Biosynthesis of Alkanes. Science 329:559–562

    Article  Google Scholar 

  30. Singer T, Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394

    Google Scholar 

  31. Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010) Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 76:3850–3862

    Article  Google Scholar 

  32. Sukovich DJ, Seffernick JL, Richman JE, Hunt KA, Gralnick JA, Wackett LP (2010) Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 76:3842–3849

    Article  Google Scholar 

  33. Tornabene TG, Oro J (1967) 14c incorporation into fatty acids and aliphatic hydrocarbons of Sarcina lutea. J Bacteriol 94:349–358

    Google Scholar 

  34. Wackett LP, Frias JA, Seffernick JL, Sukovich DJ, Cameron SM (2007) Genomic and biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1. Appl Environ Microbiol 73:7192–7198

    Article  Google Scholar 

  35. Weete J, Weete JD (1972) Aliphatic hydrocarbons of the fungi. Phytochemistry 11:1201

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Science Foundation Grant EFRI-0938157. M. Brown is an Iowa State University Plant Sciences Institute Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Shanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Brown, M., Shanks, J. (2012). Linear Hydrocarbon Producing Pathways in Plants, Algae and Microbes. In: Gopalakrishnan, K., van Leeuwen, J., Brown, R. (eds) Sustainable Bioenergy and Bioproducts. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2324-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2324-8_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2323-1

  • Online ISBN: 978-1-4471-2324-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics