Skip to main content

Is it possible to recognize local controllability in a finite number of differentiations?

  • Chapter
Open Problems in Mathematical Systems and Control Theory

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

Let f 1,…, f k, k ≥ 2, be real-analytic vector fields defined on a neighborhood of the origin in R n, and t > 0. The point xR n is called attainable from the origin for a time less than t and with no more than N switchings, if there exists a subdivision 0 = to < t 1 < … < T N +1 < t of the segment [0,t] and solutions ξ j (t), t ∈ [t j , t j +1] of the differential equations = f ij (x), for some i j ∈ {1,…,k}, such that ξ0(0) = 0, ξ j −1(t j ) = ξ j (t j ) for j = 1,…, N, ξ N (t N +1) = x. Let A t (N) be the set of all such points x; the set \( {A_t} = \bigcup\limits_{N > 0} {At} (N) \) is called the attainable set for a time no greater than t.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Nagano, “Linear differential systems with singularities and applications to transitive Lie algebras”, J. Math. Soc. Japan, 18, pp. 398–404 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Jurdjevic and H.J. Sussmann, “Controllability of nonlinear systems”, J. Differential Equations, 12, pp. 95–116 (1972).

    Article  MathSciNet  Google Scholar 

  3. N.N. Petrov, “Local controllability”, Differentzia’nye uravnenia, 12, pp. 2214–2222 (1976).

    MATH  Google Scholar 

  4. H. Hermes, “On local controllability”, SIAM J. Control Optim., 20, pp. 211–230 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Hermes, “Control systems wich generate decomposable Lie algebras”, J. Differential Equations, 44, pp. 166–187 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. H.J. Sussmann, “Lie brackets and local controllability: a sufficient condition for scalar input systems”, SIAM J. Control Optim., 21, pp. 686–713 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Stefani, “On local controllability of scalar input control systems”, in C.I. Byrnes and A. Lindquist (eds), Theory and Applications of Nonlinear Systems, North-Holland, Amsterdam, pp. 167–179 (1986).

    Google Scholar 

  8. H.J. Sussmann, “A general theorem on local controllability”, SIAM J. Control Optim., 25, pp. 158–194 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Kawski, “Control variations with an increasing number of switchings”, Bull. Amer. Math. Soc. 18, pp. 149–152 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Kawski, “High-order small time local controllability”, in H.J. Sussmann (ed.), Nonlinear Controllability and Optimal Control, Marcel Dekker, New York, pp. 431–467 (1990).

    Google Scholar 

  11. A.A. Agrachev and R.V. Gamkrelidze, “Local controllability for families of diffeomorphisms”, Systems Control Lett. 20, pp. 66–76 (1993).

    Article  MathSciNet  Google Scholar 

  12. A.A. Agrachev and R.V. Gamkrelidze, “Local controllability and semigroups of diffeomorphisms”, Acta Appl. Math. 32, pp. 1–57 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Gabrielov, “Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy”, Math. Research Letters 2, pp. 437–451 (1995).

    MathSciNet  MATH  Google Scholar 

  14. J.-J. Risler, “A bound on the degree of nonholonomy in the plane”, Theoretical Computer Science 157, pp. 129–136 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. J.-M. Coron, “Stabilizaton of controllable systems”, in A. Bellaiche, J.-J. Risler (eds.), Sub-Riemannian Geometry, Birkhäuser, New York, pp. 365–384 (1996).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this chapter

Cite this chapter

Agrachev, A.A. (1999). Is it possible to recognize local controllability in a finite number of differentiations?. In: Blondel, V., Sontag, E.D., Vidyasagar, M., Willems, J.C. (eds) Open Problems in Mathematical Systems and Control Theory. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0807-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0807-8_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1207-5

  • Online ISBN: 978-1-4471-0807-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics