Skip to main content

Computational Analysis: A Bridge to Translational Stroke Treatment

  • Chapter
  • First Online:
Translational Stroke Research

Abstract

Objective rapid quantification of injury using computational methods can improve the assessment of the degree of stroke injury, aid in the selection of patients for early or specific treatments, and monitor the evolution of injury and recovery. In this chapter, we use neonatal ischemia as a case-study of the application of several computational methods that in fact are generic and applicable across the age and disease spectrum. We provide a summary of current computational approaches used for injury detection, including Gaussian mixture models (GMM), Markov random fields (MRFs), normalized graph cut, and K-means clustering. We also describe more recent automated approaches to segment the region(s) of ischemic injury including hierarchical region splitting, support vector machine, a brain symmetry/asymmetry integrated model, and a watershed method that are robust at different developmental stages. We conclude with our assessment of probable future research directions in the field of computational noninvasive stroke analysis such as automated detection of the ischemic core and penumbra, monitoring of implanted neuronal stem cells in the ischemic brain, injury localization specific to different brain anatomical regions, and quantification of stroke evolution, recovery and spatiotemporal interactions between injury volume/severity and treatment. Computational analysis is expected to open a new horizon in current clinical and translational stroke research by exploratory data mining that is not detectable using the standard “methods” of visual assessment of imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashwal S, Tone B, Tian HR, Chong S, Obenaus A. Serial magnetic resonance imaging in a rat pup filament stroke model. Exp Neurol. 2006;202:294–301.

    Article  PubMed  CAS  Google Scholar 

  2. Ashwal S, Obenaus A, Snyder EY. Neuroimaging as a basis for rational stem cell therapy. Pediatr Neurol. 2009;40:227–36.

    Article  PubMed  Google Scholar 

  3. Saunders DE, Clifton AG, Brown MM. Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction. Stroke. 1995;26:2272–6.

    Article  PubMed  CAS  Google Scholar 

  4. Schiemanck SK, Post MWM, Kwakkel G, Witkamp TD, Kappelle LJ, Prevo AJH. Ischemic lesion volume correlates with long-term functional outcome and quality of life of middle cerebral artery stroke survivors. Restor Neurol Neurosci. 2005;23:257–63.

    PubMed  CAS  Google Scholar 

  5. Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci. 2005;27:81–6.

    Article  PubMed  CAS  Google Scholar 

  6. Coats JS, Freeberg A, Pajela EG, Obenaus A, Ashwal S. Meta-analysis of apparent diffusion coefficients in the newborn brain. Pediatr Neurol. 2009;41:263–74.

    Article  PubMed  Google Scholar 

  7. Shapiro LG. Stockman GC. Computer Vision: Prentice Hall; 2001.

    Google Scholar 

  8. Niimi T, Imai K, Maeda H, Ikeda M. Information loss in visual assessments of medical images. Eur J Radiol. 2007;61:362–6.

    Article  PubMed  Google Scholar 

  9. Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM. Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol. 1995;16:427–38.

    PubMed  CAS  Google Scholar 

  10. Barkovich AJ, Hajnal BL, Vigneron D, Sola A, Partridge JC, Allen F, Ferriero DM. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol. 1998;19:143–9.

    PubMed  CAS  Google Scholar 

  11. Haataja L, Mercuri E, Guzzetta A, Rutherford M, Counsell S, Flavia Frisone M, Cioni G, Cowan F, Dubowitz L. Neurologic examination in infants with hypoxic-ischemic encephalopathy at age 9 to 14 months: use of optimality scores and correlation with magnetic resonance imaging findings. J Pediatr. 2001;138:332–7.

    Article  PubMed  CAS  Google Scholar 

  12. Rutherford MA, Pennock JM, Counsell SJ, Mercuri E, Cowan FM, Dubowitz LM, Edwards AD. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics. 1998;102:323–8.

    Article  PubMed  CAS  Google Scholar 

  13. Recker R, Adami A, Tone B, Tian HR, Lalas S, Hartman RE, Obenaus A, Ashwal S. Rodent neonatal bilateral carotid artery occlusion with hypoxia mimics human hypoxic-ischemic injury. J Cereb Blood Flow Metab. 2009;29:1305–16.

    Article  PubMed  Google Scholar 

  14. Jiang Q, Zhang ZG, Ding GL, Zhang L, Ewing JR, Wang L, Zhang R, Li L, Lu M, Meng H, Arbab AS, Hu J, Li QJ, Pourabdollah Nejad DS, Athiraman H, Chopp M. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage. 2005;28:698–707.

    Article  PubMed  Google Scholar 

  15. Mills PH, Wu Y-JL, Ho C, Ahrens ET. Sensitive and automated detection of iron-oxide-labeled cells using phase image cross-correlation analysis. Magn Reson Imaging. 2008;26:618–28.

    Article  PubMed  CAS  Google Scholar 

  16. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.

    Article  Google Scholar 

  17. Flexman JA, Cross DJ, Kim Y, Minoshima S. Morphological and parametric estimation of fetal neural stem cell migratory capacity in the rat brain. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2007; p. 4464–7.

    Google Scholar 

  18. Ashwal S, Caots JS, Bianchi A, Bhanu B, Obenaus A. Semi-automated segmentation of ADC maps reliably defines ishchemic perinatal stroke injury. Ecquevilly, France: Sixth Hershey conference on developmental brain injury; 2008.

    Google Scholar 

  19. Bricq S, Collet C, Armspach JP. Markovian segmentation of 3D brain MRI to detect multiple sclerosis lesions. Proc of 15th IEEE international conference on image processing (ICIP). San Diego, CA; 2008. p. 733–6.

    Google Scholar 

  20. Dugas-Phocion G, Gonzalez MA, Lebrun C, Chanalet S, Bensa C, Malandain G, Ayache N. Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI. Proc of IEEE International Symposium on Biomedical Imaging 2007 (ISBI 2007). Arlington, VA, USA; 2007. p. 157–60.

    Google Scholar 

  21. Loyek C, Woermann FG, Nattkemper TW. Detection of focal cortical dysplasia in MRI using textural features. Workshop on algorithm, systems and Anwendungen. Berlin: Springer; 2008. p. 432–6.

    Google Scholar 

  22. Bergo FPG, Falcao AX, Yasuda CL, Cendes F. FCD segmentation using texture asymmetry of MR-T1 images of the brain. Proc 5th IEEE Intl Symp Biomed Img: from Nano to Macro (ISBI). Paris, France; 2008. p. 424–7.

    Google Scholar 

  23. de Boer R, Der Lijn F, Vrooman H, Vernooij M, Ikram M, Breteler M, Niessen W. Automatic segmentation of brain tissue and whitematter lesions in MRI. Proc of IEEE International Symposium on Biomedical Imaging 2007 (ISBI 2007). Arlington, VA; 2007. p. 652–5.

    Google Scholar 

  24. Agam G, Weiss D, Soman M, Arfanakis K. Probabilistic brain lesion segmentation in DT-MRI. Proc of IEEE Intl Conf on Image Processing (ICIP). Atlanta Marriott Marquis, Atlanta, GA; 2006. p. 89–92.

    Google Scholar 

  25. Freifeld O, Greenspan H, Goldberger J. Lesion detection in noisy MR brain images using constrained GMM and active contours. Proc of IEEE international symposium on biomedical imaging 2007 (ISBI 2007). Arlington, VA; 2007. p. 596–9.

    Google Scholar 

  26. Ibrahim M, John N, Kabuka M, Younis A. Hidden Markov models-based 3D MRI brain segmentation. Image Vis Comput. 2006;24:1065–79.

    Article  Google Scholar 

  27. Song Z, Tustison N, Avants B, Gee J. Adaptive graph cuts with tissue priors for brain MRI segmentation. Proc of IEEE international symposium on biomedical imaging (ISBI). Arlington, VA; 2006. p. 762–5.

    Google Scholar 

  28. He Q, Karsch K, Duan Y. A novel algorithm for automatic brain structure segmentation from MRI. Advances in visual computing. Berlin: Springer; 2008. p. 552–61.

    Google Scholar 

  29. Duda RO, Hart PE, Stork DG. Pattern classification. Hoboken: Wiley-Interscience; 2000.

    Google Scholar 

  30. Greenspan H, Ruf A, Goldberger J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging. 2006;25:1233–45.

    Article  PubMed  Google Scholar 

  31. Fan L-W, Lin S, Pang Y, Lei M, Zhang F, Rhodes PG, Cai Z. Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat. Behav Brain Res. 2005;165:80–90.

    Article  PubMed  CAS  Google Scholar 

  32. Ghosh N, Recker R, Shah A, Bhanu B, Ashwal S, Obenaus A. Automated ischemic lesion detection in a neonatal model of hypoxic ischemic injury. J Magn Reson Imaging. 2011;33:772–81.

    Article  PubMed  Google Scholar 

  33. Rouainia M, Medjram MS, Doghmance N. Brain MRI segmentation and lesions detection by EM algorithm. Proc of World Academy of Science, Engineering and Technology; 2006. p. 301–4.

    Google Scholar 

  34. Yu J, Bhanu B. Super-resolution restoration of facial images in video. Proc of IEEE Intl Conf on pattern recognition (ICPR). Hong Kong, China; 2006. p. 342–5.

    Google Scholar 

  35. Kabir Y, Dojat M, Scherrer B, Forbes F, Garbay C. Multimodal MRI segmentation of ischemic stroke lesions. Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference; 2007. p. 1595–8.

    Google Scholar 

  36. Korb K, Nicholson AE. Bayesian artificial intelligence. Boca Raton, FL: Chapman & Hall; 2003.

    Book  Google Scholar 

  37. Chen R, Herskovits EH. A Bayesian network classifier with inverse tree structure for voxelwise magnetic resonance image analysis. Proceeding of the eleventh ACM SIGKDD international conference. Chicago, IL; 2005. p. 4.

    Google Scholar 

  38. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22:888–905.

    Article  Google Scholar 

  39. Liao L, Lin T, Li B. MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach. Pattern Recognition Letters. 2008;29:1580–8.

    Article  Google Scholar 

  40. Nakamura K, Fisher E. Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage. 2009;44:769–76.

    Article  PubMed  Google Scholar 

  41. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59:1061–9.

    Article  PubMed  CAS  Google Scholar 

  42. Antel SB, Collins DL, Bernasconi N, Andermann F, Shinghal R, Kearney RE, Arnold DL, Bernasconi A. Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. Neuroimage. 2003;19:1748–59.

    Article  PubMed  Google Scholar 

  43. Dokladal P, Bloch I, Couprie M, Ruijters D, Urtasun R, Garnero L. Topologically controlled segmentation of 3D magnetic resonance images of the head by using morphological operators. Pattern Recognition. 2003;36:2463–78.

    Article  Google Scholar 

  44. Prastawa M, Gerig G. Brain lesion segmentation through physical model estimation. Advances in visual computing. Berlin: Springer; 2008 p. 562–71.

    Google Scholar 

  45. Kang X, Yund EW, Herron TJ, Woods DL. Improving the resolution of functional brain imaging: analyzing functional data in anatomical space. Magn Reson Imaging. 2007;25:1070–8.

    Article  PubMed  Google Scholar 

  46. Vapnik VN. Statistical learning theory. New York: Wiley-Blackwell; 1998.

    Google Scholar 

  47. Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, Davatzikos C. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol. 2008;15:300–13.

    Article  PubMed  Google Scholar 

  48. Saha S, Bandyopadhyay S. MRI brain image segmentation by fuzzy symmetry based genetic clustering technique. Proc of IEEE Cong on evolutionary computation, Singapore; 2007. p. 4417–24.

    Google Scholar 

  49. Ray N, Greiner R, Murtha A. Using symmetry to detect abnormalities in brain MRI. Proc Comp Soc Ind Comm. 2008;31:7–10.

    Google Scholar 

  50. Sun Y, Bhanu B. Symmetry integrated region-based image segmentation. Proc IEEE Conf on computer vision and pattern recognition (CVPR). Miami, FL; 2009. p. 826–31.

    Google Scholar 

  51. Sun Y, Bhanu B, Bhanu S. Automatic symmetry-integrated brain injury detection in MRI sequences. Proc IEEE CVPR workshop on mathematical methods in biomedical image analysis. Miami, FL; 2009. p. 79–86.

    Google Scholar 

  52. Beucher S. The watershed transformation applied to image segmentation. Microscopy and Microanalysis: Pfefferkorn Conf on Signal and Image Processing in; 1991.

    Google Scholar 

  53. Beucher S, Meyer F. The morphological approach to segmentation: the watershed transform. In: Dougherty ER, editor. Mathematical morphology in image processing. New York, NY: Marcel Dekker; 1993. p. 433–81.

    Google Scholar 

  54. Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell. 1991;13:583–98.

    Article  Google Scholar 

  55. Nguyen HT, Ji Q. Improved watershed segmentation using water diffusion and local shape priors. Proc IEEE Conf computer vision and pattern recognition. New York, NY; 2006. p. 985–92.

    Google Scholar 

  56. Cousty J, Bertrand G, Najman L, Couprie M. Watershed cuts: thinnings, shortest path forests, and topological watersheds. IEEE Trans Pattern Anal Mach Intell. 2010;32:925–39.

    Article  PubMed  Google Scholar 

  57. Grau V, Mewes AU, Alcañiz M, Kikinis R, Warfield SK. Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging. 2004;23:447–58.

    Article  PubMed  CAS  Google Scholar 

  58. Sun Y, Ghosh N, Obenaus A, Ashwal S, Bhanu B. Automated symmetry-integrated brain ROI detection in MRI sequences: a comparison. IEEE Trans Med Imaging (TMI) (submitted).

    Google Scholar 

  59. Bhanu B, Lee S. Genetic learning for adaptive image segmentation. Boston, MA: Kluwer; 1994.

    Book  Google Scholar 

  60. Popp A, Jaenisch N, Witte OW, Frahm C. Identification of ischemic regions in a rat model of stroke. PLoS One. 2009;4:e4764.

    Article  PubMed  CAS  Google Scholar 

  61. Titova E, Ostrowski RP, Adami A, Badaut J, Lalas S, Ghosh N, Vlkolinsky R, Zhang JH, Obenaus A. Brain irradiation improves focal cerebral ischemia recovery in aged rats. J Neurol Sci. 2011;306:143–53.

    Article  PubMed  Google Scholar 

  62. Wechsler LR. Imaging evaluation of acute ischemic stroke. Stroke. 2011;42:S12–5.

    Article  PubMed  Google Scholar 

  63. Olivot J-M, Albers GW. Diffusion-perfusion MRI for triaging transient ischemic attack and acute cerebrovascular syndromes. Curr Opin Neurol. 2011;24:44–9.

    Article  PubMed  Google Scholar 

  64. Wardlaw JM. Neuroimaging in acute ischaemic stroke: insights into unanswered questions of pathophysiology. J Intern Med. 2010;267:172–90.

    Article  PubMed  CAS  Google Scholar 

  65. Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging. 2010;32:1024–37.

    Article  PubMed  Google Scholar 

  66. Schlaug G, Benfield A, Baird AE, Siewert B, LÃvblad KO, Parker RA, Edelman RR, Warach S. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology. 1999;53:1528–37.

    Article  PubMed  CAS  Google Scholar 

  67. Ma H, Zavala JA, Teoh H, Churilov L, Gunawan M, Ly J, Wright P, Phan T, Arakawa S, Davis SM, Donnan GA. Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time. J Neurol Neurosurg Psychiatry. 2009;80:991–6.

    Article  PubMed  CAS  Google Scholar 

  68. Ghosh N, Turenius CI, Tone B, Snyder EY, Obenaus A, Ashwal S. Automated core-penumbra quantification in neonatal ischemic brain injury. Stroke (submitted).

    Google Scholar 

  69. Singec I, Jandial R, Crain A, Nikkhah G, Snyder EY. The leading edge of stem cell therapeutics. Annu Rev Med. 2007;58:313–28.

    Article  PubMed  CAS  Google Scholar 

  70. Park KI, Himes BT, Stieg PE, Tessler A, Fischer I, Snyder EY. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: evidence from engraftment of neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp Neurol. 2006;199:179–90.

    Article  PubMed  CAS  Google Scholar 

  71. Adler ED, Bystrup A, Briley-Saebo KC, Mani V, Young W, Giovanonne S, Altman P, Kattman SJ, Frank JA, Weinmann HJ, Keller GM, Fayad ZA. In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled Gadofluorine M in murine myocardium. JACC Cardiovasc Imaging. 2009;2:1114–22.

    Article  PubMed  Google Scholar 

  72. Qiao H, Zhang H, Zheng Y, Ponde DE, Shen D, Gao F, Bakken AB, Schmitz A, Kung HF, Ferrari VA, Zhou R. Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology. 2009;250:821–9.

    Article  PubMed  Google Scholar 

  73. Obenaus A, Dilmac N, Tone B, Tian HR, Hartman R, Digicaylioglu M, Snyder EY, Ashwal S. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann Neurol. 2011;69:282–91.

    Article  PubMed  Google Scholar 

  74. Guzman R, Bliss T, De Los Angeles A, Moseley M, Palmer T, Steinberg G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J Neurosci Res. 2008;86:873–82.

    Article  PubMed  CAS  Google Scholar 

  75. Kressler B, de Rochefort L, Liu T, Spincemaille P, Jiang Q, Wang Y. Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps. IEEE Trans Med Imaging. 2009;29:273–81.

    Article  PubMed  Google Scholar 

  76. Kraitchman DL, Gilson WD, Lorenz CH. Stem cell therapy: MRI guidance and monitoring. J Magn Reson Imaging. 2008;27:299–310.

    Article  PubMed  Google Scholar 

  77. Ghosh N, Turenius CI, Tone B, Obenaus A, Ashwal S. MRI-based automated monitoring of activities of implanted stem cells in neonatal ischemic injury. Ann Neurol (submitted).

    Google Scholar 

  78. Turenius CI, Ghosh N, Dulcich M, Denham CM, Tone B, Hartman R, Snyder EY, Obenaus A, Ashwal S. Iron toxicity and gender based study of implanted hNSC in neonatal ischemic injury. Exp Neurol (submitted).

    Google Scholar 

  79. Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD, Hammers A. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. Neuroimage. 2008;40:672–84.

    Article  PubMed  Google Scholar 

  80. Dinov ID, Van Horn JD, Lozev KM, Magsipoc R, Petrosyan P, Liu Z, Mackenzie-Graham A, Eggert P, Parker DS, Toga AW. Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Front Neuroinform. 2009;3:22.

    Article  PubMed  Google Scholar 

  81. Faiz M, Acarin L, Villapol S, Schulz S, Castellano B, Gonzalez B. Substantial migration of SVZ cells to the cortex results in the generation of new neurons in the excitotoxically damaged immature rat brain. Mol Cell Neurosci. 2008;38:170–82.

    Article  PubMed  CAS  Google Scholar 

  82. Kim D, Hong KS, Song J. The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol Cells. 2007;23:132–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

part of this work has been funded by NIH NINDS 1R01NS059770-01A2, National Medical Test Bed (NMTB), LLU Pediatric Research Fund, and an anonymous donation to the Loma Linda University School of Medicine. Part of the research by Drs. Bhanu and Sun has been funded by NSF grants 0641076, 0727129, and 0903667. We are grateful to Dr. Samuel Barnes (LLU) for SVM results, Beatriz Tone and Dr. Hui Rou Tian (LLU) for surgical procedures, Kamal Ambadipudi and Sonny Kim (LLU) for technical assistance with MRI acquisition, Dr. Jerome Badaut (LLU) for use of histochemical equipment, Dr. Evan Y. Snyder (Sanford-Burnham Medical Research Institute, La Jolla, CA, USA) for iron-labeled stem cells, Dr. Ivo Dinov and Dr. Alen Zamanyan (Laboratory of Neuroimaging, UCLA, Los Angeles, USA) for assistance on using LONI Pipeline and brain parsing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmalya Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghosh, N., Sun, Y., Turenius, C., Bhanu, B., Obenaus, A., Ashwal, S. (2012). Computational Analysis: A Bridge to Translational Stroke Treatment. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_42

Download citation

Publish with us

Policies and ethics