
Chapter 9

Lower Semicontinuous Convex
Functions

The theory of convex functions is most powerful in the presence of lower semi-
continuity. A key property of lower semicontinuous convex functions is the
existence of a continuous affine minorant, which we establish in this chapter
by projecting onto the epigraph of the function.

9.1 Lower Semicontinuous Convex Functions

We start by observing that various types of lower semicontinuity coincide for
convex functions.

Theorem 9.1 Let f : H → ]−∞,+∞] be convex. Then the following are
equivalent:

(i) f is weakly sequentially lower semicontinuous.
(ii) f is sequentially lower semicontinuous.
(iii) f is lower semicontinuous.
(iv) f is weakly lower semicontinuous.

Proof. The set epi f is convex by Definition 8.1. Hence, the equivalences follow
from Lemma 1.24, Lemma 1.35, and Theorem 3.32. ⊓⊔

Definition 9.2 The set of lower semicontinuous convex functions from H to
[−∞,+∞] is denoted by Γ (H).

The set Γ (H) is closed under several important operations. For instance,
it is straightforward to verify that Γ (H) is closed under multiplication by
strictly positive real numbers.

Proposition 9.3 Let (fi)i∈I be a family in Γ (H). Then supi∈I fi ∈ Γ (H).

Proof. Combine Lemma 1.26 and Proposition 8.14. ⊓⊔
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130 9 Lower Semicontinuous Convex Functions

Corollary 9.4 Let (fi)i∈I be a family in Γ (H). Suppose that one of the
following holds:

(i) I is finite and −∞ /∈ ⋃i∈I fi(H).
(ii) infi∈I fi ≥ 0.

Then
∑

i∈I fi ∈ Γ (H).

Proof. (i): A consequence of Lemma 1.27 and Proposition 8.15.
(ii): Let I be the class of nonempty finite subsets of I and set (∀J ∈ I)

gJ =
∑
i∈J fi. Then it follows from (i) that (∀J ∈ I) gJ ∈ Γ (H). However,

(2.4) yields
∑

i∈I fi = supJ∈I gJ . In view of Proposition 9.3, the proof is
complete. ⊓⊔

Proposition 9.5 Let K be a real Hilbert space, let L ∈ B(H,K), and let
f ∈ Γ (K). Then f ◦ L ∈ Γ (H).

Proof. This is a consequence of Proposition 8.18. ⊓⊔

Proposition 9.6 Let f ∈ Γ (H) and suppose that −∞ ∈ f(H). Then f is
nowhere real-valued, i.e., f(H) ⊂ {−∞,+∞}.

Proof. Let x ∈ H be such that f(x) = −∞, let y ∈ H, and let α ∈ ]0, 1[. If
f(y) 6= +∞, then Proposition 8.4 yields f(αx + (1 − α)y) = −∞. In turn,
since f is lower semicontinuous, f(y) ≤ limα↓0 f(αx+ (1− α)y) = −∞, i.e.,
f(y) = −∞. ⊓⊔

The function x 7→ −∞ belongs to Γ (H), which makes the following notion
well defined.

Definition 9.7 Let f : H → [−∞,+∞]. Then

f̆ = sup
{
g ∈ Γ (H)

∣∣ g ≤ f
}

(9.1)

is the lower semicontinuous convex envelope of f .

Proposition 9.8 Let f : H → [−∞,+∞]. Then the following hold:

(i) f̆ is the largest lower semicontinuous convex function majorized by f .

(ii) (∀x ∈ H) f̆(x) = limy→x f̆(y).

(iii) epi f̆ is closed and convex.

(iv) conv dom f ⊂ dom f̆ ⊂ conv dom f .

Proof. (i): This is a consequence of (9.1) and Proposition 9.3.
(ii): This follows from (i) and Lemma 1.31(iv).
(iii): Combine (i), Lemma 1.24, and Definition 8.1.

(iv): By (i), f̆ ≤ f and f̆ is convex. Hence, Proposition 8.2 yields

conv dom f ⊂ conv dom f̆ = dom f̆ . (9.2)
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Now set C = conv dom f and

g : H → [−∞,+∞] : x 7→
{
f̆(x), if x ∈ C;
+∞, if x /∈ C.

(9.3)

Using (iii), we note that epi g = (epi f̆) ∩ (C × R) is closed and convex. It
follows from Lemma 1.24 and Definition 8.1 that

g ∈ Γ (H). (9.4)

Now fix x ∈ H. If x ∈ C, then g(x) = f̆(x) ≤ f(x); otherwise, x /∈ dom f ⊂ C
and therefore g(x) = f(x) = +∞. Altogether, g ≤ f and, in view of (9.4),

we obtain g ≤ f̆ . Thus, dom f̆ ⊂ dom g ⊂ C = conv dom f . ⊓⊔

Theorem 9.9 Let f : H → [−∞,+∞]. Then epi f̆ = conv epi f .

Proof. Set E = conv epi f . Since f̆ ≤ f , we have epi f ⊂ epi f̆ . Hence E ⊂
conv epi f̆ = epi f̆ by Proposition 9.8(iii). It remains to show that epi f̆ ⊂ E.

We assume that f 6≡ +∞, since otherwise f̆ = f and the conclusion is clear.
Let us proceed by contradiction and assume that there exists

(x, ξ) ∈ epi f̆ r E. (9.5)

Since E is a nonempty closed convex subset of H×R, Theorem 3.14 implies
that the projection (p, π) of (x, ξ) onto E satisfies

(
∀(y, η) ∈ E

)
〈y − p | x− p〉+ (η − π)(ξ − π) ≤ 0. (9.6)

Letting η ↑ +∞ in (9.6), we deduce that ξ ≤ π. Let us first assume that
ξ = π. Then (9.6) yields (∀y ∈ conv dom f) 〈y − p | x− p〉 ≤ 0. Consequently,

since Proposition 9.8(iv) asserts that x ∈ dom f̆ ⊂ conv dom f , we obtain
‖x−p‖2 = 0 and, in turn, (p, π) = (x, ξ), which is impossible since (x, ξ) /∈ E
by (9.5). Therefore, we must have

ξ < π. (9.7)

Setting u = (x− p)/(π − ξ) and letting η = f(y) in (9.6), we get

(∀y ∈ dom f) 〈y − p | u〉+ π ≤ f(y). (9.8)

Consequently, f is minorized by the lower semicontinuous convex function
g : y 7→ 〈y − p | u〉+ π, and it follows that g ≤ f̆ . In particular, since (x, ξ) ∈
epi f̆ , we have

π ≤ ‖x− p‖
2

π − ξ + π = g(x) ≤ f̆(x) ≤ ξ, (9.9)

which contradicts (9.7). We conclude that epi f̆ ⊂ E. ⊓⊔
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Corollary 9.10 Let f : H → [−∞,+∞] be convex. Then f̄ = f̆ .

Proof. Combine Lemma 1.31(vi) and Theorem 9.9. ⊓⊔

Corollary 9.11 Let f : H → ]−∞,+∞] be convex and such that lev<0 f 6=
∅. Then lev<0 f ⊂ lev≤0 f ⊂ lev≤0 f̆ and lev<0 f = lev≤0 f = lev≤0 f̆ .

Proof. Take x ∈ H. Then f(x) < 0 ⇒ f(x) ≤ 0 ⇒ f̆(x) ≤ 0, which shows the

inclusions. Now assume that x ∈ lev≤0 f̆ . Then, since f is convex, The-

orem 9.9 yields (x, f̆(x)) ∈ epi f̆ = epif . Hence there exists a sequence

(xn, ξn)n∈N in epi f that converges to (x, f̆ (x)). Now fix z ∈ lev<0 f and
define a sequence (αn)n∈N in ]0, 1] by

(∀n ∈ N) αn =





1

n+ 1
, if ξn ≤ 0;

min

{
1,

1

n+ 1
+

ξn
ξn − f(z)

}
, otherwise.

(9.10)

Then eventually

f(αnz + (1− αn)xn) ≤ αnf(z) + (1 − αn)f(xn)
≤ αnf(z) + (1 − αn)ξn
< 0. (9.11)

Therefore the sequence (αnz + (1 − αn)xn)n∈N, which converges to x, lies
eventually in lev<0 f . The result follows. ⊓⊔

9.2 Proper Lower Semicontinuous Convex Functions

As illustrated in Proposition 9.6, nonproper lower semicontinuous convex
functions are of limited use. By contrast, proper lower semicontinuous convex
functions will play a central role in this book.

Definition 9.12 The set of proper lower semicontinuous convex functions
from H to ]−∞,+∞] is denoted by Γ0(H).

Example 9.13 Let (ei)i∈I be a family in H and let (φi)i∈I be a family in
Γ0(R) such that (∀i ∈ I) φi ≥ φi(0) = 0. Set f : H → ]−∞,+∞] : x 7→∑

i∈I φi(〈x | ei〉). Then f ∈ Γ0(H).

Proof. Set (∀i ∈ I) fi : H → ]−∞,+∞] : x 7→ φi(〈x | ei〉). Then f =
∑
i∈I fi

and (∀i ∈ I) 0 ≤ fi ∈ Γ0(H). Thus, it follows from Corollary 9.4(ii) that
f ∈ Γ (H). Finally, since f(0) = 0, f is proper. ⊓⊔

Proposition 9.14 Let f ∈ Γ0(H), let x ∈ H, and let y ∈ dom f . For every
α ∈ ]0, 1[, set xα = (1− α)x + αy. Then limα↓0 f(xα) = f(x).
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Proof. Using the lower semicontinuity and the convexity of f , we obtain
f(x) ≤ limα↓0 f(xα) ≤ limα↓0 f(xα) ≤ limα↓0(1 − α)f(x) + αf(y) = f(x).
Therefore, limα↓0 f(xα) = f(x). ⊓⊔

Corollary 9.15 Let f ∈ Γ0(R). Then f
∣∣
dom f

is continuous.

The conclusion of Corollary 9.15 fails in general Hilbert spaces and even
in the Euclidean plane (see Example 9.27 below).

We conclude this section with an extension of Fact 6.13.

Fact 9.16 [233, Corollary 13.2] Let f and g be in Γ0(H). Then

int(dom f − dom g) = core(dom f − dom g). (9.12)

9.3 Affine Minorization

A key property of functions in Γ0(H) is that they possess continuous affine
minorants. To see this, we require the following two results.

Proposition 9.17 Let f ∈ Γ0(H), let (x, ξ) ∈ H×R, and let (p, π) ∈ H×R.
Then (p, π) = Pepi f (x, ξ) if and only if

max{ξ, f(p)} ≤ π (9.13)

and

(∀y ∈ dom f) 〈y − p | x− p〉+
(
f(y)− π

)(
ξ − π

)
≤ 0. (9.14)

Proof. Since f ∈ Γ0(H), the set epi f is nonempty, closed, and convex. Now set
(p, π) = Pepi f (x, ξ). Then Theorem 3.14 implies that (p, π) is characterized
by (p, π) ∈ epi f and (∀(y, η) ∈ epi f) 〈y − p | x− p〉 + (η − π)(ξ − π) ≤ 0,
which is equivalent to f(p) ≤ π and (∀y ∈ dom f)(∀λ ∈ R+) 〈y − p | x− p〉+
(f(y) + λ − π)(ξ − π) ≤ 0. By letting λ ↑ +∞, we deduce that ξ ≤ π. The
characterization follows. ⊓⊔

Proposition 9.18 Let f ∈ Γ0(H), let x ∈ dom f , let ξ ∈ ]−∞, f(x)[, and
let (p, π) ∈ H× R. Then (p, π) = Pepi f (x, ξ) if and only if

ξ < f(p) = π (9.15)

and

(∀y ∈ dom f) 〈y − p | x− p〉 ≤
(
f(y)− f(p)

)(
f(p)− ξ

)
. (9.16)

Proof. Suppose first that (p, π) = Pepi f (x, ξ). Since p ∈ dom f , (9.14) yields

(
f(p)− π

)(
ξ − π

)
≤ 0. (9.17)
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To establish that ξ < f(p), we argue by contradiction. Suppose that f(p) ≤ ξ.
Then f(p) − π ≤ ξ − π and hence, since ξ − π ≤ 0 by (9.13), we obtain
(f(p) − π)(ξ − π) ≥ (ξ − π)2. In view of (9.17), we deduce that ξ = π. In
turn, since x ∈ dom f , (9.14) implies that 〈x− p | x− p〉 ≤ 0. Thus x = p and
hence (p, π) = (x, ξ). This is impossible, since (p, π) ∈ epi f and (x, ξ) /∈ epi f .
Thus,

ξ < f(p), (9.18)

and (9.13) implies that ξ < π and f(p) ≤ π. Hence, (9.17) yields f(p) = π
and (9.15) holds. Combining (9.15) and Proposition 9.17, we obtain (9.16).

Conversely, if (9.15) and (9.16) hold, then Proposition 9.17 implies directly
that (p, π) = Pepi f (x, ξ). ⊓⊔

Theorem 9.19 Let f ∈ Γ0(H). Then f possesses a continuous affine mino-
rant.

Proof. Fix x ∈ dom f and ξ ∈ ]−∞, f(x)[, and set (p, π) = Pepi f (x, ξ). Then,
by (9.15), f(p) > ξ. Now set u = (x − p)/(f(p) − ξ) and g : H → R : y 7→
〈y − p | u〉+ f(p). Then (9.16) yields g ≤ f . ⊓⊔

Corollary 9.20 Let f ∈ Γ0(H). Then f is bounded below on every nonempty
bounded subset of H.

Proof. Let C be a nonempty bounded subset of H and set β = supx∈C ‖x‖.
Theorem 9.19 asserts that f has a continuous affine minorant, say 〈· | u〉+ η.
Then, by Cauchy–Schwarz, (∀x ∈ C) f(x) ≥ 〈x | u〉 + η ≥ −‖x‖ ‖u‖+ η ≥
−β‖u‖+ η > −∞. ⊓⊔

Example 9.21 Suppose that H is infinite-dimensional and let f : H → R

be a discontinuous linear functional (see Example 2.20 and Example 8.33).
Then f has no continuous affine minorant.

Proof. Assume that the conclusion is false, i.e., that there exist u ∈ H and
η ∈ R such that (∀x ∈ H) 〈x | u〉+ η ≤ f(x). Then, since f is odd, (∀x ∈ H)
f(x) ≤ 〈x | u〉 − η ≤ ‖x‖ ‖u‖ − η. Consequently, sup f(B(0; 1)) ≤ ‖u‖ − η
and therefore f is bounded above on a neighborhood of 0. This contradicts
Corollary 8.30(i) since f is nowhere continuous. ⊓⊔

Theorem 9.22 Let f ∈ Γ0(H) and let x ∈ int dom f . Then there exists a
continuous affine minorant a of f such that a(x) = f(x). In other words,
(∃u ∈ H)(∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y).

Proof. In view of Corollary 8.30, x ∈ cont f . Hence, it follows from Theo-
rem 8.29 and Proposition 8.36 that int epi f 6= ∅. In turn, Proposition 7.5
implies that (x, f(x)) ∈ spts(epi f), and we therefore derive from Theorem 7.4
that there exists (z, ζ) ∈ (H× R)r (epi f) such that (x, f(x)) = Pepi f (z, ζ).
In view of Proposition 3.19 and since x ∈ int dom f , we assume that
z ∈ int dom f . Thus, by Proposition 9.17, max{ζ, f(x)} ≤ f(x), i.e.,
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f(x) ≥ ζ (9.19)

and

(∀y ∈ dom f) 〈y − x | z − x〉+
(
f(y)− f(x)

)(
ζ − f(x)

)
≤ 0. (9.20)

If f(x) = ζ, then the above inequality evaluated at y = z yields z = x,
which contradicts the fact that (z, ζ) 6= (x, f(x)). Hence f(x) > ζ. Now set
u = (z − x)/(f(x) − ζ). Then (9.20) becomes (∀y ∈ dom f) 〈y − x | u〉 +
f(x)− f(y) ≤ 0, and the result follows. ⊓⊔

Proposition 9.23 (Jensen’s inequality) Let (Ω,F, µ) be a measure space
such that µ(Ω) ∈ R++, let φ ∈ Γ0(R), and let x : Ω → R be a measurable
function such that µ(Ω)−1

∫
Ω x(ω)µ(dω) ∈ int domφ. Then

φ

(
1

µ(Ω)

∫

Ω

x(ω)µ(dω)

)
≤ 1

µ(Ω)

∫

Ω

φ(x(ω))µ(dω). (9.21)

Proof. Since φ is lower semicontinuous, it is measurable, and so is therefore
φ ◦ x. Now set ξ = µ(Ω)−1

∫
Ω
x dµ. It follows from Theorem 9.22 that there

exists α ∈ R such that (∀η ∈ R) α(η − ξ) + φ(ξ) ≤ φ(η). Thus, for µ-almost
every ω ∈ Ω, α(x(ω) − ξ) + φ(ξ) ≤ φ(x(ω)). Integrating these inequalities
over Ω with respect to µ yields φ(ξ)µ(Ω) ≤

∫
Ω
φ(x(ω))µ(dω). ⊓⊔

Example 9.24 Let (Ω,F, µ) be a measure space such that µ(Ω) ∈ R++, let
(H, ‖ · ‖H) be a real Hilbert space, and take p and q in R++ such that p < q.
Then the following hold:

(i) Let x ∈ Lp((Ω,F, µ);H)). Then
(∫

Ω

‖x(ω)‖p
H
µ(dω)

)1/p

≤ µ(Ω)1/p−1/q

(∫

Ω

‖x(ω)‖q
H
µ(dω)

)1/q

.

(9.22)
(ii) Lq((Ω,F, µ);H) ⊂ Lp((Ω,F, µ);H).

Proof. (i): Set φ = | · |q/p. Then it follows from Example 8.21 that φ is convex.
Now let x ∈ Lp((Ω,F, µ);H)) and set y : ω 7→ ‖x(ω)‖p

H
. Since y is integrable,

µ(Ω)−1
∫
Ω y dµ ∈ R = domφ, and Proposition 9.23 applied to y yields (9.22).

(ii): An immediate consequence of (i). ⊓⊔

Example 9.25 Let X be a random variable, and take p and q in R++ such
that p < q and E|X |p < +∞. Then E

1/p|X |p ≤ E
1/q|X |q.

Proof. Let µ be a probability measure and set H = R in Example 9.24(i) (see
Example 2.8). ⊓⊔
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9.4 Construction of Functions in Γ0(H)

We start with a basic tool for constructing functions in Γ0(H).

Proposition 9.26 Let g : H → ]−∞,+∞] be a proper convex function such
that dom g is open and g is continuous on dom g. Set

f : H → ]−∞,+∞] : x 7→





g(x), if x ∈ dom g;

lim
y→x

g(y), if x ∈ bdry dom g;

+∞, if x ∈ Hr dom g.

(9.23)

Then f = ğ and f ∈ Γ0(H).

Proof. Set C = dom g. To show that f = ğ we shall repeatedly utilize Propo-
sition 9.8. Note that, since g ≥ ğ, we have C ⊂ dom ğ ⊂ C. Let x ∈ H and
assume first that x ∈ C. Then +∞ > g(x) ≥ ğ(x). By Theorem 9.9, there
exists a sequence (xn, ξn)n∈N in epi g such that (xn, ξn) → (x, ğ(x)). Hence
ğ(x) = lim ξn = lim ξn ≥ lim g(xn) ≥ lim ğ(xn) ≥ ğ(x) and so f(x) = g(x) =
lim g(xn) = lim g(xn) = ğ(x). Consequently, f = ğ on C. If x ∈ H r C, then
f(x) = +∞ = ğ(x) and thus f = ğ on H r C. If x ∈ (bdryC) r (dom ğ),
then +∞ ≥ f(x) = limy→x g(y) ≥ limy→x ğ(y) = ğ(x) = +∞ and thus
f(x) = ğ(x) = +∞. Finally, we assume that x ∈ (bdryC) ∩ (dom ğ). Using
Theorem 9.9 again, we see that there exists a sequence (xn, ξn)n∈N in epi g
such that (xn, ξn) → (x, ğ(x)). Hence f(x) = limy→x g(y) ≥ limy→x ğ(y) =
ğ(x) = lim ξn = lim ξn ≥ lim g(xn) ≥ limy→x g(y) = f(x) and therefore
f(x) = ğ(x). We have verified that f = ğ. It follows that f is lower semicon-
tinuous and convex. Since f is real-valued on C, Proposition 9.6 implies that
f is also proper. ⊓⊔

Example 9.27 The function

f : R2 → ]−∞,+∞] : (ξ, η) 7→






η2/ξ, if ξ > 0;

0, if (ξ, η) = (0, 0);

+∞, otherwise,

(9.24)

belongs to Γ0(R
2) and f

∣∣
dom f

is not continuous at (0, 0).

Proof. Set

g : R2 → ]−∞,+∞] : (ξ, η) 7→
{
η2/ξ, if ξ > 0;

+∞, otherwise.
(9.25)

The convexity of t 7→ t2 and Proposition 8.23 imply that g is proper and
convex. Moreover, Proposition 9.26 yields ğ = f ∈ Γ0(R

2). Now set x =
(0, 0), fix a sequence (αn)n∈N in R++ such that αn ↓ 0, and set (∀n ∈ N)
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xn = (α2
n, αn). Then (xn)n∈N lies in dom f and xn → x, but lim f(xn) = 1 6=

0 = f(x). ⊓⊔
The following result concerns the construction of strictly convex functions

in Γ0(R).

Proposition 9.28 Let g : R→ ]−∞,+∞] be strictly convex and proper, and
suppose that dom g = ]α, β[, where α and β are in [−∞,+∞] and α < β. Set

f : R→ ]−∞,+∞] : x 7→






g(x), if x ∈ ]α, β[;

lim
y↓α

g(y), if x = α;

lim
y↑β

g(y), if x = β;

+∞, otherwise.

(9.26)

Then f is strictly convex, f = ğ, and f ∈ Γ0(R).

Proof. Proposition 9.14, Corollary 8.30(iii), and Proposition 9.26 imply that
f is convex and that f = ğ ∈ Γ0(R). To verify strict convexity, suppose
that x and y are distinct points in dom f , take γ ∈ ]0, 1[, and suppose that
f(γx+(1− γ)y) = γf(x)+ (1− γ)f(y). By Exercise 8.1, (∀λ ∈ ]0, 1[) f(λx+
(1−λ)y) = λf(x)+ (1−λ)f(y). Since ]x, y[ ⊂ ]α, β[ and f = g on ]α, β[, this
contradicts the strict convexity of g. ⊓⊔

The next two examples are consequences of Proposition 9.28 and Propo-
sition 8.12(ii).

Example 9.29 (entropy) The negative Boltzmann–Shannon entropy func-
tion

R→ ]−∞,+∞] : x 7→






x ln(x)− x, if x > 0;

0, if x = 0;

+∞, if x < 0,

(9.27)

is strictly convex and belongs to Γ0(R).

Example 9.30 The following are strictly convex functions in Γ0(R):

(i) x 7→ exp(x).

(ii) x 7→ |x|p, where p ∈ ]1,+∞[.

(iii) x 7→
{
1/xp, if x > 0;

+∞, otherwise,
where p ∈ [1,+∞[.

(iv) x 7→
{
−xp, if x ≥ 0;

+∞, otherwise,
where p ∈ ]0, 1[.

(v) x 7→
{
1/
√
1− x2, if |x| < 1;

+∞, otherwise.
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(vi) x 7→
{
−
√
1− x2, if |x| ≤ 1;

+∞, otherwise.

(vii) x 7→






x ln(x) + (1− x) ln(1− x), if x ∈ ]0, 1[;

0, if x ∈ {0, 1};
+∞, otherwise.

(viii) x 7→
{
− ln(x), if x > 0;

+∞, otherwise
(negative Burg entropy function).

Remark 9.31 By utilizing direct sum constructions (see Proposition 8.25
and Exercise 8.12), we can construct a (strictly) convex function in Γ0(R

N )
from (strictly) convex functions in Γ0(R).

We now turn our attention to the construction of proper lower semicon-
tinuous convex integral functions (see Example 2.5 for notation).

Proposition 9.32 Let (Ω,F, µ) be a measure space, let (H, 〈· | ·〉
H
) be a real

Hilbert space, and let ϕ ∈ Γ0(H). Suppose that H = L2((Ω,F, µ);H) and that
one of the following holds:

(i) µ(Ω) < +∞.
(ii) ϕ ≥ ϕ(0) = 0.

Set

f : H → ]−∞,+∞]

x 7→






∫

Ω

ϕ
(
x(ω)

)
µ(dω), if ϕ ◦ x ∈ L1

(
(Ω,F, µ);R

)
;

+∞, otherwise.

(9.28)

Then f ∈ Γ0(H).

Proof. We first observe that, since ϕ is lower semicontinuous, it is measurable,
and so is therefore ϕ ◦ x for every x ∈ H. Let us now show that f ∈ Γ0(H).

(i): By Theorem 9.19, there exists a continuous affine function ψ : H→ R

such that ϕ ≥ ψ, say ψ = 〈· | u〉
H
+ η for some u ∈ H and η ∈ R. Let us set

u : Ω → H : ω 7→ u. Then u ∈ H since
∫
Ω
‖u(ω)‖2

H
µ(dω) = ‖u‖2

H
µ(Ω) < +∞.

Moreover, for every x ∈ H, ϕ ◦ x ≥ ψ ◦ x and

∫

Ω

ψ
(
x(ω)

)
µ(dω) =

∫

Ω

〈x(ω) | u〉
H
µ(dω) + ηµ(ω) = 〈x | u〉+ ηµ(ω) ∈ R.

(9.29)
Thus, Proposition 8.22 asserts that f is well defined and convex, with dom f ={
x ∈ H

∣∣ ϕ ◦ x ∈ L1((Ω,F, µ);R)
}
. It also follows from (9.28) and (9.29) that

(∀x ∈ dom f) f(x) =

∫

Ω

(ϕ− ψ)
(
x(ω)

)
µ(dω) + 〈x | u〉+ ηµ(ω). (9.30)
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Now take z ∈ domϕ and set z : Ω → H : ω 7→ z. Then z ∈ H and
∫
Ω
|ϕ◦z|dµ =

|ϕ(z)|µ(Ω) < +∞. Hence, ϕ ◦ z ∈ L1((Ω,F, µ);R). This shows that f is
proper. Next, to show that f is lower semicontinuous, let us fix ξ ∈ R and
a sequence (xn)n∈N in lev≤ξ f that converges to some x ∈ H. In view of
Lemma 1.24, it suffices to show that f(x) ≤ ξ. Since ‖xn(·) − x(·)‖H → 0

in L2((Ω,F, µ);R), there exists a subsequence (xkn)n∈N such that xkn(ω)
H→

x(ω) for µ-almost every ω ∈ Ω [3, Theorem 2.5.1 & Theorem 2.5.3]. Now
set φ = (ϕ − ψ) ◦ x and (∀n ∈ N) φn = (ϕ − ψ) ◦ xkn . Since ϕ − ψ is lower
semicontinuous, we have

φ(ω) = (ϕ− ψ)
(
x(ω)

)
≤ lim(ϕ− ψ)

(
xkn(ω)

)
= limφn(ω) µ-a.e. on Ω.

(9.31)
On the other hand, since infn∈N φn ≥ 0, Fatou’s lemma [3, Lemma 1.6.8]
yields

∫
Ω lim φndµ ≤ lim

∫
Ω φndµ. Hence, we derive from (9.30) and (9.31)

that

f(x) =

∫

Ω

φdµ+ 〈x | u〉+ ηµ(Ω)

≤
∫

Ω

limφndµ+ 〈x | u〉+ ηµ(Ω)

≤ lim

∫

Ω

φndµ+ lim 〈xkn | u〉+ ηµ(Ω)

= lim

∫

Ω

(ϕ ◦ xkn)dµ

= lim f(xkn)

≤ ξ. (9.32)

(ii): Since (8.16) holds with ̺ = 0, it follows from Proposition 8.22 that
f is a well-defined convex function. In addition, since ϕ(0) = 0, (9.28) yields
f(0) = 0. Thus, f is proper. Finally, to prove that f is lower semicontinuous,
we follow the same procedure as above with ψ = 0. ⊓⊔

Example 9.33 (Boltzmann–Shannon entropy) Let (Ω,F, µ) be a finite
measure space and suppose that H = L2(Ω,F, µ) (see Example 2.6). Using
the convention 0 ln(0) = 0, set

f : H → ]−∞,+∞]

x 7→






∫

Ω

(
x(ω) ln(x(ω))− x(ω)

)
µ(dω), if x ≥ 0 µ-a.e. on Ω;

+∞, otherwise.

(9.33)

Then f ∈ Γ0(H). In particular, this is true in the following cases:

(i) Entropy of a random variable: H = L2(Ω,F,P), where (Ω,F,P) is a
probability space (see Example 2.8), and
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f : H → ]−∞,+∞]

X 7→
{
E
(
X ln(X)−X

)
, if X ≥ 0 a.s. ;

+∞, otherwise.

(9.34)

(ii) Discrete entropy: H = RN and

f : H → ]−∞,+∞]

(ξk)1≤k≤N 7→






N∑

k=1

ξk ln(ξk)− ξk, if min
1≤k≤N

ξk ≥ 0;

+∞, otherwise.

(9.35)

Proof. Denote by ϕ the function defined in (9.27). Then Example 9.29 asserts
that ϕ ∈ Γ0(R). First, take x ∈ H such that x ≥ 0 µ-a.e., and set C ={
ω ∈ Ω

∣∣ 0 ≤ x(ω) < 1
}
and D =

{
ω ∈ Ω

∣∣ x(ω) ≥ 1
}
. Since, for every ξ ∈

R+, |ϕ(ξ)| = |ξ ln(ξ)− ξ| ≤ 1[0,1[(ξ) + ξ21[1,+∞[(ξ), we have

∫

Ω

∣∣ϕ
(
x(ω)

)∣∣µ(dω) =
∫

C

∣∣ϕ
(
x(ω)

)∣∣µ(dω) +
∫

D

∣∣ϕ
(
x(ω)

)∣∣µ(dω)

≤ µ(C) +
∫

D

|x(ω)|2µ(dω)

≤ µ(Ω) + ‖x‖2

< +∞, (9.36)

and therefore ϕ ◦ x ∈ L1
(
(Ω,F , µ);R

)
. Now take x ∈ H and set A ={

ω ∈ Ω
∣∣ x(ω) ≥ 0

}
and B =

{
ω ∈ Ω

∣∣ x(ω) < 0
}
. Then

∫

Ω

ϕ(x(ω))µ(dω) =

∫

A

ϕ(x(ω))µ(dω) +

∫

B

ϕ(x(ω))µ(dω)

=






∫

Ω

x(ω)
(
ln(x(ω))− 1)µ(dω), if x ≥ 0 µ-a.e. on Ω;

+∞, otherwise

= f(x). (9.37)

Altogether, it follows from Proposition 9.32(i) with H = R that f ∈ Γ0(H).
(i): Special case when µ is a probability measure.
(ii): Special case when Ω = {1, . . . , N}, F = 2Ω, and µ is the counting

measure, i.e., for every C ∈ 2Ω, µ(C) is the cardinality of C. ⊓⊔
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Exercises

Exercise 9.1 Let f : H → ]−∞,+∞] be lower semicontinuous and midpoint
convex in the sense that

(∀x ∈ dom f)(∀y ∈ dom f) f

(
x+ y

2

)
≤ f(x) + f(y)

2
. (9.38)

Show that f is convex.

Exercise 9.2 Let f : H → ]−∞,+∞] be midpoint convex. Show that f need
not be convex.

Exercise 9.3 Provide a family of continuous linear functions the supremum
of which is neither continuous nor linear.

Exercise 9.4 Let f ∈ Γ0(H). Show that R∩ ran f is convex, and provide an
example in which ran f is not convex.

Exercise 9.5 Provide an example of a convex function f : H → [−∞,+∞]
such that ran f = {−∞, 0,+∞}. Compare with Proposition 9.6.

Exercise 9.6 Set C =
{
C ⊂ H

∣∣ C is nonempty, closed, and convex
}

and
set

(∀C ∈ C) ΥC : H → [−∞,+∞] : x 7→
{
−∞, if x ∈ C;
+∞, otherwise.

(9.39)

Prove that C→
{
f ∈ Γ (H)

∣∣ −∞ ∈ f(H)
}
: C 7→ ΥC is a bijection.

Exercise 9.7 Let f : H → ]−∞,+∞] be convex. Show that f is continuous
if and only if it is lower semicontinuous and cont f = dom f .

Exercise 9.8 Let f : H → ]−∞,+∞] be convex and set µ = inf f(H). Prove
the following statements:

(i) f ∈ Γ (H) ⇔ (∀ξ ∈ ]µ,+∞[) lev≤ξ f = lev<ξ f .
(ii) cont f = dom f ⇔ (∀ξ ∈ ]µ,+∞[) lev<ξ f = int lev≤ξ f .
(iii) f is continuous ⇔ (∀ξ ∈ ]µ,+∞[) lev=ξ f = bdry lev≤ξ f .

Exercise 9.9 Let (en)n∈N be a sequence in H, let (ωn)n∈N be a sequence in
R+, and let (pn)n∈N be a sequence in [1,+∞[. Set f : H → ]−∞,+∞] : x 7→∑

n∈N
ωn |〈x | en〉|pn . Show that f ∈ Γ0(H).

Exercise 9.10 Use Proposition 8.12(ii) and Proposition 9.28 to verify Ex-
ample 9.29 and Example 9.30.
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