Skip to main content

The Use of Bone Marrow Mesenchymal Stem Cells to Repair the Infarcted Heart

  • Chapter
Cardiac Remodeling and Failure

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 5))

  • 118 Accesses

Abstract

Following a myocardial infarction heart cells are necrosed and others hibernate because they are underperfused. Since adult bone marrow contains stromal cells, that can differentiate into myogenic and endothelial progenitor cells, stromal cell transplantation of the damaged heart may restore both myocardial structure and function. This paper reviews the theory and use of bone marrow stromal cells as a source of heart cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, and Anversa P. 1998. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95(15):8801–8805.

    Article  PubMed  CAS  Google Scholar 

  2. Marelli D, Deschene C, Al-Elfy M, Kao RL, and Chiu RC. 1992. Cell transplantation for myocardial repair: An experimental approach. Cell Transplantation 1(6):383–390.

    PubMed  CAS  Google Scholar 

  3. Li, R-K, Jia, Z-Q, Weisel, RD, Mickle, DAG, Zhang J, Mohabeer MK, Rao V, and Ivanov J. 1996. Cardiomyocyte transplantation improves heart function. Annals of Thoracic Surgery 62(3):654–661.

    Article  PubMed  CAS  Google Scholar 

  4. Li, R-K, Mickle, DAG, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li GM, Merante F, and Jia, Z-Q 1997. The natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96(suppl 11) 11-179–11-87.

    Google Scholar 

  5. Gronthos S, Simmons P. 1996. The biology and application of human bone marrow stromal cell precursors. J Hematother 5(1): 15–23.

    Article  Google Scholar 

  6. Waller EK, Olweus JL-J, Huang S, Bguyen M, Guo GR, and Terstappen L. 1995. The “common stem cell” hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood 85(9):2422–2435.

    PubMed  CAS  Google Scholar 

  7. Islam A, Glomski C, and Henderson ES. 1990. Bone lining (endosteal) cells and hematopoiesis reevaluated: a light microscopic study of normal and pathologic human bone marrow in plasticembedded sections. Anat Rec 227(3):300–306.

    Article  PubMed  CAS  Google Scholar 

  8. Quesenberry PJ, Crittenden RB, Lowry P, Kittler EW, Rao S, Peters S, Ramshw H, and Stewart FM. 1994. In vitro and in vivo studies of stromal niches. Blood Cells 20(1):97–104.

    PubMed  CAS  Google Scholar 

  9. Moore KA, Em AH, and Lemischka IR. 1997. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89(12):4337–4347.

    PubMed  CAS  Google Scholar 

  10. Peault B. 1996. Hematopoietic stem cell emergence in embryonic life: developmental hematology revisted. J Hematother 5(4):369–378.

    Article  PubMed  CAS  Google Scholar 

  11. Asahara T, Murohara T, Sullivan A, Silver M, Zee, VDR, Li T, Witzenbichler B, Schatteman G, and Isner JM. 1997. Isolation of puttative progenitor endotherial cells for angiogenesis. Science 275(5302):964–967.

    Article  PubMed  CAS  Google Scholar 

  12. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Pz MC, Hicklin DJ, Witte L, Moore MA, and Rafii S. 2000. Expression of VEGFR-2 and AC 133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95(3):952–958.

    PubMed  CAS  Google Scholar 

  13. Isner JM, Asahar T. 1999. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103(9): 1231–1236.

    Article  PubMed  CAS  Google Scholar 

  14. Wineman J, Moore K, Lemischka I, and Muller-Sieburg C. 1995. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87(1):4082–4090.

    Google Scholar 

  15. Asahara T, Kalka C, and Isner JM. 2000. Stem cell therapy and gene transfer for regeneration. Gene Therapy 7(6):451–457.

    Article  PubMed  CAS  Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, and Marshak DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147.

    Article  PubMed  CAS  Google Scholar 

  17. Prockop D. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74.

    Article  PubMed  CAS  Google Scholar 

  18. Schofield R. 1978. The relationship between the spleen colony-forming cell and the hematopoietic stem cell: a hypothesis. Blood Cells 4(1-2):7–25.

    PubMed  CAS  Google Scholar 

  19. Rafii S. 2000. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105(1):17–19.

    Article  PubMed  CAS  Google Scholar 

  20. Lin Y, Weisdorf DJ, Solovey A, and Hebbel RR 2000. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77.

    Article  Google Scholar 

  21. Papapetropoulos A, Garcia-Cardena G, Madri JA, and Sessa WC. 1997. Nitirc oxide protection contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100(12):3131–3139.

    Article  PubMed  CAS  Google Scholar 

  22. Partanen T, Makinen T, Arola J, Suda T, Weich HA, and Alitalo K. 1999. Endothelial growth factor receptors in human fetal heart. Circulation 100(6):583–586.

    Article  PubMed  CAS  Google Scholar 

  23. Asahara T, Chen D, Takahahi T, Fujikawa K, Kearney M, Magner M, Yancopolous GD, and Isner JM. 1998. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83(3):233–240.

    Article  PubMed  CAS  Google Scholar 

  24. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney Chen D, Symes JF, Fishman MC, Huang P, Isner JM. 1998. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101(11):2567–2578.

    Article  Google Scholar 

  25. Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, and Isner JM. 1999. Role of endothelial nitric oxide synthase in endothelial cell migration. Aterioscler Thromb Vasc Biol 19(5):1156–1161.

    Article  CAS  Google Scholar 

  26. Namiki A. 1995. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 270(52):31189–31195.

    Article  PubMed  CAS  Google Scholar 

  27. Asahara T, Murohara T, Sullivan A, Silver M, van den Zee R, Li T, Witzenbichler B, Schatteman G, and Isner JM. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967.

    Article  PubMed  CAS  Google Scholar 

  28. Braunwald E, Rutherford JD. 1986. Reversible ischemic left ventricular dysfunction: Evidence for the “hibernating myocardium”. J Am Coll Cardiol 8(6): 1467–1470.

    Article  Google Scholar 

  29. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, and Unger EF. 1994. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89(5):2183–2189.

    Article  PubMed  CAS  Google Scholar 

  30. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa K, Kungbeil C, and Epstein SE. 1994. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266:H1588–1595.

    PubMed  CAS  Google Scholar 

  31. Losordo DW. 1998. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98(25): 2800–2804.

    Article  Google Scholar 

  32. Li, R-K, Yau T, Mickle D, and Weisel, RD 2000. Cell therapy to repair broken hearts. Can J Cardiol 14:735–744.

    Google Scholar 

  33. Tomita S, Li R-K, Weisel RD, Mickle DAG, Kim E-J, Sakai T, and Jia Z-Q. 1999. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19suppl S):II-247–11-256.

    Article  Google Scholar 

  34. Kobayashi T, Hamano K, Li TS, Katoh T, Kobayashi S, Matsuzaki M, and Esato K. 2000. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res 89(2): 189–195.

    Article  PubMed  CAS  Google Scholar 

  35. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, and Isner JM. 1999. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228.

    Article  PubMed  CAS  Google Scholar 

  36. Reinlib L, Field L. 2000. Cell Transplantation as future therapy for cardiovascular disease?. Circulation 101(18):E182–187.

    Article  PubMed  CAS  Google Scholar 

  37. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Len A, Anversa P. 2001. Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705.

    Article  PubMed  CAS  Google Scholar 

  38. Chen J, Jones PA. 1990. Potentiation of MyoD1 activity by 5-aza-2’-deoxycytidine. Cell Growth Differ 1(8):383–392.

    PubMed  CAS  Google Scholar 

  39. Scott-Burden T, Bogenmann E, and Jones PA. 1986. Effects of complex extracellular matrices on 5-azacytidine-induced myogenesis. Exp Cell Res 164(2):527–535.

    Article  PubMed  CAS  Google Scholar 

  40. Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, and Chiu RC. 2000. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120(5):999–1005.

    Article  PubMed  CAS  Google Scholar 

  41. Tomita S, Mickle DA, Weisel RD, Jia ZQ, Tumiati LC, Allidina Y, Liu P, and Li RK. 2001. Myogenesis and angiogenesis following autologous porcine bone marrow stromal cell transplantation improved heart function. J Thorac Cardiovasc Surg In press.

    Google Scholar 

  42. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, and Kanz L. 1999. Regulation of transendothelial migration of hematopoietic progenitor cells. Ann NY Acad Sci 872:176–185.

    Article  PubMed  CAS  Google Scholar 

  43. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, and Itescu S. 2001. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436.

    Article  PubMed  CAS  Google Scholar 

  44. Sussman M. 2001. Cardiovascular biology. Hearts and bones. Nature 410(6829):640–641.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. G. Mickle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomita, S., Parbhakar, RK.L.S., Al-Radi, O., Weisel, R.D., Mickle, D.A.G. (2003). The Use of Bone Marrow Mesenchymal Stem Cells to Repair the Infarcted Heart. In: Singal, P.K., Dixon, I.M.C., Kirshenbaum, L.A., Dhalla, N.S. (eds) Cardiac Remodeling and Failure. Progress in Experimental Cardiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9262-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9262-8_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4864-1

  • Online ISBN: 978-1-4419-9262-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics