Skip to main content

Intermediate Voltage Electron Microscopes (IVEM), Electron Tomography, and Single-Particle Electron Microscopy

  • Chapter
Biological Electron Microscopy

Abstract

Contemporary IVEMs as typified by those from JEOL (JEM-2010 and JEM-3010) and FEICO/Philips (Tecnai T20 and Tecnai T30) possess most of the advantages of beam penetration of HVEMs without most of the disadvantages associated with HVEM cost, stability, and Space requirements. The original IVEM units did not provide images at low accelerating voltages (100-120 kV) that were comparable with conventional TEM images, but modern IVEMs are considerably more flexible. It is now possible to achieve high resolution for both ultrathin sections and semithin sections in excess of 3 p,m with IVEMs, particularly if equipped with energy filtration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahting, U, Thun, C., Typke, D., Nargang, F.E., Neupert, W., and Nussberger, S. 1999. The TOM core complex: The general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147: 959.

    Article  PubMed  CAS  Google Scholar 

  • Burmeister, W., Grimm, R., and Walz, J. 1999. Electron tomography of molecules and cells. Trends Cell Biol. 9: 81.

    Article  Google Scholar 

  • Deng, Y., Marko, M., Buttle, K.F., Leith, A., Mieczkowski, M., and Mannella, C.A. 1999. Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J. Struct. Biol. 127: 231.

    Article  PubMed  CAS  Google Scholar 

  • DeRosier, D.J. and Klug, A. 1968. Reconstruction of three-dimensional structures from electron micrographs. Nature 217: 130.

    Article  Google Scholar 

  • Frank, J. (ed.). 1992. Electron tomography: Three-dimensional imaging with the transmission electron microscope. Plenum Press, New York.

    Google Scholar 

  • Frank, J. 1996. Three-dimensional electron microscopy of macromolecular assemblies. Academic Press, New York.

    Google Scholar 

  • Glaeser, R.M. 1982. A critique of the theoretical basis for the use of HVEM in biology. EMSA Proc. 40: 2.

    Google Scholar 

  • Hart, R.G. 1968. Electron microscopy of unstained biological material: The polytropic montage. Science 159: 1464.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, W., Langer, R., Knesch, G., and Poppe, C. 1968. Protein-Kristallstrukturanalyse mit Electronestrahlen. Naturwissenschaften 55: 333.

    Article  PubMed  CAS  Google Scholar 

  • Koster, A.J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J., and Baumieister, W. 1997. Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120: 276.

    Article  PubMed  CAS  Google Scholar 

  • Lamvik, M.K. 1991. Radiation damage in dry and frozen hydrated organic material. J. Microsc. 161: 171.

    Article  Google Scholar 

  • Lewis, J.C., Jones, N.L., O’Toole, E.T., Grant, K.W., and Jerome, W.G. 1988. Intermediate voltage electron microscopy in biomedical research. EMSA Bull. 18:2.

    Google Scholar 

  • Li, H., DeRosier, DJ., Nicholson, W.V., Nogales, E., and Downing, K.H. 2002. Microtubule structure at 8 Ã… resolution. Structure 10: 1317.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P.K., Lawrence, M.C., and Crowther, R.A. 1988. A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24: 7.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B.F., and Marko, M. 2001. The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49: 553.

    Article  PubMed  CAS  Google Scholar 

  • Medalia, O., Weber, I., Frangakis, A.S., Nicastro, D., Gerisch, G., and Baumeister, W. 2002. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298: 1209.

    Article  PubMed  CAS  Google Scholar 

  • Nicastro, D. Frangakis, A.S., Typke, D., and Baumeister, W. 2000. Cryo-electron tomography of Neurospora mitochondria. J. Struct. Biol. 129: 48.

    Article  PubMed  CAS  Google Scholar 

  • Peachey, L.D. 1986. The extraction of three-dimensional information from Stereo micrographs of thick sections using Computer graphics methods. Ann. N. Y. Acad. Sei. 483:161.

    Article  CAS  Google Scholar 

  • Perkins, G., Renkin, C., Martone, M.E., Young, S.J., Ellisman, M., and Frey, T. 1997a. Electron tomography of neuronal mitochondria: Three-dimensional structure and Organization of cristae and membrane contacts. J. Struct. Biol. 119: 260.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, G.A., Renken, C.W., Song, J.Y., Frey, T.G., Young, S.J., Lamont, S., Martone, M.E., Lindsey, S., and Ellisman, M.H. 1997b. Electron tomography of large, multicomponent biological structures. J. Struct. Biol. 120: 219.

    Article  PubMed  CAS  Google Scholar 

  • Pulokas, J., Green, C., Kisseberth, N., Potter, C.S., and Carragher, B. 1999. Improving the positional accuraey of the goniometer on the Philips CM series TEM. J. Struct. Biol. 128: 250.

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, S., Pinnick, B., and Kessel, M. 2000. The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: Cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J. Struct. Biol. 130: 10.

    Article  PubMed  CAS  Google Scholar 

  • Van Heel, M., Gowen, B., Matadeen, R., Orlova, E.V., Finn, R., Pape, T., Cohen, D., Stark, H., Schmidt, R., Schatz, M., and Patwardhan, A. 2000. Single-particle electron cryo-microscopy: Towards atomic resolution. Quart. Rev. Biophys. 33: 307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Michael J. Dykstra

About this chapter

Cite this chapter

Dykstra, M.J., Reuss, L.E. (2003). Intermediate Voltage Electron Microscopes (IVEM), Electron Tomography, and Single-Particle Electron Microscopy. In: Biological Electron Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9244-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9244-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4856-6

  • Online ISBN: 978-1-4419-9244-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics