Skip to main content

Abstract

Here, we describe the latest developments on the mechanistic characterization of poly(ADP-ribose) polymerase (PARP) [EC 2.4.2.30], a DNA-dependent enzyme that catalyzes the synthesis of protein-bound ADP-ribose polymers in eucaryotic chromatin. A detailed kinetic analysis of the automodification reaction of PARP in the presence of nicked dsDNA indicates that protein-poly(ADP-ribosyl)ation probably occurs via a sequential mechanism since enzyme-bound ADP-ribose chains are not reaction intermediates. The multiple enzymatic activities catalyzed by PARP (initiation, elongation, branching and self-modification) are the subject of a very complex regulatory mechanism that may involve allosterism. For instance, while the NAD+ concentration determines the average ADP-ribose polymer size (polymerization reaction), the frequency of DNA strand breaks determines the total number of ADP-ribose chains synthesized (initiation reaction). A general discussion of some of the mechanisms that regulate these multiple catalytic activities of PARP is presented below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin RC, Gill DM: Poly(ADP-ribose) Synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J Biol Chem 255: 10502–10508, 1980

    PubMed  CAS  Google Scholar 

  2. Menissier-deMurcia J, Molinete M, Gradwohl G, Simonin F, de Murcia G: Zinc-binding domain of poly(ADP-ribose) polymerase participates in the recognition of single-stranded breaks on DNA. J Mol Biol 210: 229–2337, 1989

    Article  PubMed  Google Scholar 

  3. Huletsky A, Niedergang C, Frechette A, Aubin R, Gaudreau A, Poirier GG: Sequential ADP-ribosylation pattern of nucleosomal histones. Eur JBiochem 146: 277–285, 1985

    Article  CAS  Google Scholar 

  4. Boulikas T: At least 60 ADP-ribosylated variant histones are present in nuclei from dimethylsulphate-treated and untreated cells. EMBO J 7: 57–67, 1988

    PubMed  CAS  Google Scholar 

  5. Boulikas T: Poly(ADP-ribosylated) histones in chromatin replication. J Biol Chem 265: 14638–14647, 1990

    PubMed  CAS  Google Scholar 

  6. Yoshihara K, Itaya A, Tanaka Y, Ohashi Y, Ito K, Teraoka H, Tsukuda K, Matsukage A, Kamiya T: Inhibition of DNA polymerase α, DNA polymerase β, terminal deoxynucleotidyltransferase and DNA ligase II by poly(ADP-ribosyl)ation reaction in vitro. Biochem Biophys Res Commun 128: 61–67, 1985

    Article  PubMed  CAS  Google Scholar 

  7. Ohashi Y: Effect of ionic strength on chain elongation in ADP ribosylation of various nucleases. J Biochem 99: 971–979, 1986

    PubMed  CAS  Google Scholar 

  8. Yoshihara K, Hashida T, Tanaka Y, Oghushi H: Enzyme-bound early product of purified poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 78: 1281–1288, 1977

    Article  PubMed  CAS  Google Scholar 

  9. Kawaichi M, Ueda K, Hayaishi O: Multiple auto-poly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase: Mode of modification and properties of automodified synthetase. J Biol Chem 256: 9483–9489, 1981

    PubMed  CAS  Google Scholar 

  10. Adamietz P: Poly(ADP-ribose) synthetase is the major endogenous non-histone acceptor for poly(ADP-ribose) in alkylated rat hepatoma cells. Eur J Biochem 169: 365–372, 1987

    Article  PubMed  CAS  Google Scholar 

  11. Kreimeyer A, Wieickens K, Adamietz P, Hilz H: DNA-repair associated ADP-ribosylation in vivo. Modification of histone HI differs from that of the principal acceptor proteins. J Biol Chem 259: 890–896, 1984

    PubMed  CAS  Google Scholar 

  12. Nishikimi N, Ogasawara K, Kameshita I, Taniguchi T, Shizuta Y: Poly(ADP-ribose) synthetase. The DNA binding domain and the auto modification domain. J Biol Chem 257: 6102–6105, 1982

    PubMed  CAS  Google Scholar 

  13. Kameshita I, Matsuda Z, Taniguchi T, Shizuta Y: Poly(ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate binding domain, the DNA-binding domain, and the automodification domain. J Biol Chem 259: 47700–1776, 1984

    Google Scholar 

  14. Kameshita I, Matsuda M, Nishikimi N, Ushiro H, Shizuta Y: Recon-stitution and poly(ADP-ribosyl)ation of proteolytically fragmented poly(ADP-ribose) synthetase. J Biol Chem 261: 3863–3868, 1986

    PubMed  CAS  Google Scholar 

  15. Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M: The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. J Biol Chem 265: 21907–21913, 1991.

    Google Scholar 

  16. Gradwohl G, Menessier de Murcia G, Molinete M, Simonin F, Koken M, Hoeijmakers JHJ, de Murcia G: The second zinc finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Nati Acad Sci USA 87: 2990–2994, 1990

    Article  CAS  Google Scholar 

  17. Uchida K, Hanai S, Ishikawa K-I, Ozawa Y-I, Uchida M, Sugimura T, Miwa M: Cloning of cDNA encoding Drosophila poly(ADP-ribose) polymerase: Leucine zipper in the automodification domain. Proc Natl Acad Sci USA 90: 3481–3485, 1993

    Article  PubMed  CAS  Google Scholar 

  18. Buki KG, Bauer PI, Hakam A, Kun E: Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J Biol Chem 270: 3370–3377, 1995

    Article  PubMed  CAS  Google Scholar 

  19. Bauer PI, Buki KG, Hakam A, Kun E: Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity. Biochem J 270: 17–26, 1990

    PubMed  CAS  Google Scholar 

  20. Mendoza-Alvarez H, Alvarez-Gonzalez R: Poly(ADP-ribose) poly-merase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 268: 17575–17580, 1993

    Google Scholar 

  21. Panzeter P, Althaus FR: DNA strand break-mediated partitioning of poly(ADP-ribose) polymerase function. Biochem 33: 9600–9605, 1994

    Article  CAS  Google Scholar 

  22. Le Cam E, Fack F, Menissier-de Murcia J, Cognet JAH, Barbin A, Sarantoglou V, Revet B, Delain E, de Murcia G: Conformational analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase. J Mol Biol 235: 1062–1071, 1994

    Article  PubMed  Google Scholar 

  23. Domenighini M, Rappuoli R: Three conserved consensus sequences identify the NA-binding site of ADP-ribosylating enzymes, expressed by bacteria, T-even bacteriophages, and eucaryotes. Mol Microbiol 21: 667–674, 1996

    Article  PubMed  CAS  Google Scholar 

  24. Marsischky GT, Wilson BA, Collier RJ: Role of glutamic acid 988 of human poly(ADP-ribose) polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem 270: 3247–3254, 1995

    Article  PubMed  CAS  Google Scholar 

  25. Takada T, Iida K, Moss J: Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. J Biol Chem 279: 541–544, 1995

    Google Scholar 

  26. Rolli V, O’;F arrell M, Menissier-deMurcia J, de Murcia G: Random mutagenesis of the poly(ADP-ribose) catalytic domain reveals amino acids involved in polymer branching. Biochem 36: 12147–12154, 1997

    Article  CAS  Google Scholar 

  27. Kawaichi M, Ueda K, Hayaishi O: Initiation of poly(ADP-ribosyl)-histone synthesis by poly(ADP-ribose) synthetase. J Biol Chem 255: 816–819, 1980

    PubMed  CAS  Google Scholar 

  28. Ueda K, Kawaichi M, Okayama H, Hayaishi O: Poly(ADP-ribosyl)ation of nuclear proteins: Enzymatic elongation of chemically synthesized ADP-ribose histone adducts. J Biol Chem 254: 679–687, 1979

    PubMed  CAS  Google Scholar 

  29. Taniguchi T: Reaction mechanism of poly(ADP-ribose) synthetase. Biochem Biophys Res Commun 147: 1008–1012, 1987

    Article  PubMed  CAS  Google Scholar 

  30. Alvarez-Gonzalez R: 3’-deoxyNAD+ as a substrate for poly(ADP-ribose) polymerase and the reaction mechanism of poly(ADP-ribose) elongation. J Biol Chem 263: 17690–17696, 1988

    PubMed  CAS  Google Scholar 

  31. Miwa M, Saikawa N, Yamaizumi Z, Nishimura S, Sugimura T: Structure of poly(adenosine diphosphate ribose): Identification of 2’-(l”-ribosyl-2”-(or 3”-)(1’ ”-ribosyl)adenosine-5’,5”,5’ ”-tris-(phosphate) as a branch linkage. Proc Nati Acad Sei USA 76: 595–599, 1979

    Article  CAS  Google Scholar 

  32. Keith G, Desgres J, deMurcia G: Use of two-dimensional thin-layer chromatography for the components study of poly(adenosine diphosphate ribose). Anal Biochem 191: 309–313, 1990

    Article  PubMed  CAS  Google Scholar 

  33. Kawaichi M, Ueda K, Hayaishi O: Multiple auto-poly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase: Mode of modification and properties of automodified synthetase. J Biol Chem 256: 9483–9489, 1981

    PubMed  CAS  Google Scholar 

  34. Naegeli H, Loetscher P, Althaus FR: Poly ADP-ribosylation of proteins: Processivity of a post-translational modification. J Biol Chem 264: 14382–14385, 1989

    PubMed  CAS  Google Scholar 

  35. Mendoza-Alvarez H, Alvarez-Gonzalez R: Characterization of the mono(ADP-ribosyl)transferase activity associated with poly(ADP-ribose) polymerase. (Submitted), 1998

    Google Scholar 

  36. Alvarez-Gonzalez R, Jacobson MK: Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry 26: 3218–3224, 1987

    Article  PubMed  CAS  Google Scholar 

  37. Kiehibauch CC, Aboul-Ela N, Jacobson EL, Ringer DP, Jacobson M K: High resolution fractionation and characterization of ADP-ribose polymers. Anal Biochem 208: 26–34, 1993

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alvarez-Gonzalez, R., Watkins, T.A., Gill, P.K., Reed, J.L., Mendoza-Alvarez, H. (1999). Regulatory mechanisms of poly(ADP-ribose) polymerase. In: Alvarez-Gonzalez, R. (eds) ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancer. Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8740-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8740-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4678-4

  • Online ISBN: 978-1-4419-8740-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics