Skip to main content

An Overview on Animal Models of ALL

  • Chapter
  • First Online:
New Agents for the Treatment of Acute Lymphoblastic Leukemia
  • 732 Accesses

Abstract

Further advances in the understanding of the molecular processes essential for the development, spread, and survival of cancer cells are leading to the identification and validation of new targets for anti-cancer therapy. It is imperative that the pace of screening and drug development technology can keep up, so as to enable the transfer of interesting hypotheses into useful drugs in patients. One of the challenges facing leukemia research is the development and validation of clinically relevant animal models of disease, both to improve our understanding of the mechanisms involved, and to provide reliable efficacy testing for new therapeutic agents. In recent years, a great deal of progress has been made in this field. This chapter hopes to summarise these studies, and looks forward in the future modelling of acute lymphoblastic leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee EM, Bachmann PS, Lock RB. Xenograft models for the preclinical evaluation of new therapies in acute leukemia. Leukemia and Lymphoma, 2007. 48(4):659–668.

    Article  Google Scholar 

  2. Sausville E, Burger AM. Contributions of human tumour xenografts to anticancer drug development. Cancer Research, 2006. 66:3351–3354.

    Article  PubMed  CAS  Google Scholar 

  3. Kerbel RS. Human tumour xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived – but they can be improved. Cancer Biology Therapy, 2003. 2:134–139.

    Google Scholar 

  4. Khanna C, Hunter K. Modelling metastasis in vivo. Carcinogenesis, 2005. 26:513–523.

    Article  PubMed  CAS  Google Scholar 

  5. Lozzio BB, Machado EA, Lozzio CB, Lair S. Hereditary asplenic-athymic mice; transplantation of human myelogenous leukemic cells. Journal of Experimental Medicine, 1976. 143:225–231.

    Article  PubMed  CAS  Google Scholar 

  6. Cavallo F, Riccardi C, Forni M, Pericle F, Bosco MC, Giovarelli M, Soleti A, Forni G. Growth and dissemination of human malignant lymphoblast’s in immunosuppressed nu/nu mice. Natural Immunity and Cell Growth Regulation, 1991. 10:256–264.

    PubMed  CAS  Google Scholar 

  7. Bosma GC, Custer RP, Bosma, MJ. A severe combined immunodeficiency mutation in the mouse. Nature, 1983. 301:527–530.

    Article  PubMed  CAS  Google Scholar 

  8. McCune JM, Mamikawa R, Kaneshima H, Schultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science, 1988. 241:1632–1639.

    Article  PubMed  CAS  Google Scholar 

  9. Kamel-Reid S, Dick JE. Engraftment of immune deficient mice with human haematopoietic stem cells. Science, 1988. 242:1706–1709.

    Article  PubMed  CAS  Google Scholar 

  10. Lapidot T, Fajerman Y, Kollet O. Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis. Journal of Molecular Medicine, 1997. 75:664–673.

    Article  PubMed  CAS  Google Scholar 

  11. Dorshkind K, Pollack SB, Bosma MJ, Phillips RA. Natural killer (NK) cells are present in mice with severe combined immunodeficiency. Journal of Immunology, 1985. 134:3798–3801.

    CAS  Google Scholar 

  12. Leblond V, Autran B, Cesbron J-Y. The SCID mouse mutant: definition and potential use as a model for immune and hematological disorders. Hematology and Cell Therapy, 1997. 39:213–221.

    Article  PubMed  CAS  Google Scholar 

  13. Dick JE. Stem cell concepts renew cancer research. Blood, 2008. 112:4793–4807.

    Article  PubMed  CAS  Google Scholar 

  14. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 1988. 335:256–259.

    Article  PubMed  CAS  Google Scholar 

  15. Kamel-Reid S, Letarte M, Sirard C, Doedens M, Grunberger T, Fulop G, Freedman MH, Phillips RA, Dick JE. A model of human acute lymphoblastic leukemia in immune deficient SCID mice. Science, 1989. 246:1597–1600.

    Article  PubMed  CAS  Google Scholar 

  16. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nature Reviews in Molecular and Cellular Biology, 2003. 4:33–45.

    Article  CAS  Google Scholar 

  17. Ballen KK, Valinski H, Greiner D, Shultz LD, Becker PS, Hsieh CC, Stewart FM, Quesenberry PJ. Variables to predict engraftment of umbilical cord blood into immunodeficient mice: usefulness of the non-obese diabetic severe combined immunodeficient assay. British Journal of Haematology, 2001. 114:211–218.

    Article  PubMed  CAS  Google Scholar 

  18. Uckun FM, Sather HN, Waurzyniak BJ, Sensel MG, Chelstrom L, Ek O. Prognostic significance of B-lineage leukemic cell growth in SCID mice: a Children’s Cancer group Study. Leukemia and Lymphoma, 1998. 30:503–514.

    PubMed  CAS  Google Scholar 

  19. Uckun FM, Downing JR, Chelstrom LM, Gunther R, Ryan M, Simon J, Carroll AJ, Tuel-Ahlgren L, Crist WM. Human t(4;11)(q21;q23) acute lymphoblastic leukemia in mice with severe combined immunodeficiency. Blood, 1994. 84:859–865.

    PubMed  CAS  Google Scholar 

  20. Waurzyniak BJ, Heerema N, Sensel MG, Gaynon PS, Kraft P, Sather HN, Chelstrom L, Reaman GH, Uckun FM. Distinct in vivo engraftment and growth patterns of t(1;19)+/E2A-PBX1+ and t(9;22)+/BCR-ABL+ human leukemia cells in SCID mice. Leukemia and Lymphoma, 1998. 32:77–87.

    PubMed  CAS  Google Scholar 

  21. Baum CM, Weissman IL, Tsukamoto AS, Buckle A-S, Peault B. Isolation of a candidate human haematopoietic stem-cell population. Procedures of the National Academy of Science USA, 1992. 89:2804–2808.

    Article  CAS  Google Scholar 

  22. Fraser CC, Kaneshima H, Hansteen G, Kilpatrick M, Hoffman R, Chen BP. Human allogenic stem cell maintenance and differentiation in a long term multilineage SCID-hu graft. Blood, 1995. 86:1680–1693.

    PubMed  CAS  Google Scholar 

  23. Dick J.E. Normal and leukemic human stem cells assayed in SCID mice. Seminars in Immunology, 1991. 8:197–206.

    Article  Google Scholar 

  24. Lapidot T, Pfulmio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage haematopoiesis from immature human cells engrafted in SCID mice. Science, 1992. 255:1137–1141.

    Article  PubMed  CAS  Google Scholar 

  25. Vormoor J, Lapidot T, Pfulmio F, Risdon G, Patterson B, Broxmeyer HE, Dick JE. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood, 1994. 83:2489–2497.

    PubMed  CAS  Google Scholar 

  26. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweiltzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL, Leiter E. Multiple defects in innate and adaptive immunological function in NOD/LtSz-scid mice. Journal of Immunology, 1995. 154:180–191.

    CAS  Google Scholar 

  27. Dick JE. Normal and leukemic human stem cells assayed in SCID mice. Seminars in Immunology, 1996. 8:197–206.

    Article  PubMed  CAS  Google Scholar 

  28. Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment. Stem Cells, 1998. 16:166–177.

    Article  PubMed  CAS  Google Scholar 

  29. Lowary P, Shultz LD, Queensberry P. Multiple immune defects in the NOD/SCID mouse facilitate human hematopoietetic engraftment. Blood, 1994. 84 (Suppl 1): 346a.

    Google Scholar 

  30. Baersch G, Mollers T, Hotte A, Dockhorn-Dworniczak B, Rube C, Ritter J, Jurgens H, Vormoor J. Good engraftment of B-cell precursor ALL in NOD-SCID mice. Klinische Podiatry, 1997. 209:178–185.

    Article  CAS  Google Scholar 

  31. Speigel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B, Rechavi G,Vormoor J, Lapidot T. Unique SDF-1 induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signalling. Blood, 2004. 103:2900–2907.

    Article  Google Scholar 

  32. Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S, Ramirez CD, Rice AM, Haber M, Norris MD, MacKenzie KL, Lock RB. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood, 2004. 103:3905–3914.

    Article  PubMed  CAS  Google Scholar 

  33. Lock RB, Liem N, Farnsworth ML, Milross CG, Xue C, Tajbakhsh M, Haber M, Norris MD, Marshall GM, Rice AM. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood, 2002. 99:4100–4108.

    Article  PubMed  CAS  Google Scholar 

  34. Conneally E, Cashamn J, Petzer A, Eaves C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repoopulating activity in nonobese diabetic-scid/scid mice. Proceedings of the National Academy of Science USA, 1997. 94:9836–9841.

    Article  CAS  Google Scholar 

  35. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Medicine, 1996. 2:1329–1337.

    Article  PubMed  CAS  Google Scholar 

  36. Wang JC, Doedens M, Dick JE. Primitive human haematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilzed peripheral cord blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood, 1997. 89:3919–3924.

    PubMed  CAS  Google Scholar 

  37. McKenzie JL, Gan OI, Doedens M, Dick JE. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood, 2005. 106:1259–1261.

    Article  PubMed  CAS  Google Scholar 

  38. Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, Moriyama M, Nakamura M, Katsuki M, Takahashi K, Yamamura K, Sugamura K. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood, 1996. 87:956–967.

    PubMed  CAS  Google Scholar 

  39. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 2005. 174:6477–6489.

    CAS  Google Scholar 

  40. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T. NOD/SCID/ gamma (c) null mouse: an excellent recipient mouse model for engraftment of human cells Blood, 2002. 100:3175–3182.

    Article  PubMed  CAS  Google Scholar 

  41. Agliano A, Martines-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G, Shultz LD and Bertolini F. Human acute leukemia cells injected in NOD/LtSz/IL-2R gamma null mice generate a faster and more efficient disease compared to other NOD/SCID related strains. International Journal of Cancer, 2008. 123:2222–2227.

    Article  CAS  Google Scholar 

  42. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. British Journal of Haematology. 1998. 103:335–342.

    Article  PubMed  CAS  Google Scholar 

  43. Hystad ME, Myklebust JH, Bo TH, Sivertsen EA, Rian E, Forfang L, Munthe E, Rosenwald A, Chiorazzi M, Jonassen I, Staudt LM, Smeland EB. Characterization of early stages of human B cell development by gene expression profiling. Journal of Immunology, 2007. 179:3662–3671.

    CAS  Google Scholar 

  44. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A, Rosemann A, Irving J, Stam R W, Shultz LD, Harbott J, Jurgens H, Schrappe M, Pieters R, Vormoor J. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell, 2008. 14:47–58.

    Article  PubMed  Google Scholar 

  45. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 1997. 3:730–737.

    Article  PubMed  CAS  Google Scholar 

  46. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M, Sanchez-Garcia I. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood, 2000(95):1007–1013.

    PubMed  CAS  Google Scholar 

  47. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A. Characterization of acute lymphoblastic leukemia progenitor cells. Blood, 2004. 104:2919–2925.

    Article  PubMed  CAS  Google Scholar 

  48. Hong D., Gupta, R., Ancliff, P., Atzberger, A., Brown, J., Soneji, S., Green, J., Colman, S., Piacibello, W., Buckle, V., Tsuzuki, S., Greaves, M., Enver, T. Initiating and cancer propagating cells in ETV6-RUNX1 associated childhood leukemia. Science, 2008. 319:336–339.

    Article  PubMed  CAS  Google Scholar 

  49. Vormoor J, Identifying the Acute Lymphoblastic Leukemia Stem Cell. 2007, ASCO.

    Google Scholar 

  50. Nishigaki H, Ito C, Manabe A, Kumagai M, Coustan-Smith E, Yanishevski Y, Behm FG, Raimondi SC, Pui CH, Campana D. Prevalence and growth characteristics of malignant stem cells in B-lineage acute lymphoblastic leukemia. Blood, 1997. 89:3735–3744.

    PubMed  CAS  Google Scholar 

  51. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell, 2006. 10:253–254.

    Article  Google Scholar 

  52. Mazurier F Doedens M, Gan OI, Dick JE. Rapid myeloerthroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nature Medicine, 2003. 9:959–963.

    Article  PubMed  CAS  Google Scholar 

  53. Kong Y, Yoshida S, Saito Y, Doi T, Nagatoshi Y, Fukata M, Saito N, Yang SM, Iwamoto C, Okamura J, Liu KY, Huang XJ, Lu DP, Shultz LD, Harada M, Ishikawa F. CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self renewal capacity in human B-precursor ALL. Leukemia and Lymphoma, 2008. 22:1207–1213.

    CAS  Google Scholar 

  54. Morisot S, Wayne AS, Bohana-Hashtan O, Kaplan IM, Hildreth R, Brown P, Stetler-Stevenson M, Civin CI. Leukemia Stem Cells (LSCs) Are Frequent in Childhood Precursor B Acute Lymphoblastic Leukemia (ALL). Blood (ASH Annual Meeting Abstracts), 2008. 112:1354.

    Google Scholar 

  55. Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A. Expression of CD133 on leukemia initiating cells in childhood ALL. Blood, 2009. 113:3287–3296.

    Google Scholar 

  56. Dick JE. Looking ahead in cancer stem cell research. Nature Biotechnology, 2009. 27:44–46.

    Article  PubMed  CAS  Google Scholar 

  57. Taussig DC, Miraki-Moud F, Anjos-Alfonso F, Pearce DJ, Allen K, Ridler C, Lillington D, Oakervee H, Cavenagh J, Agrawal SG, Lister TA, Gribben JG, Bonnet D. Anti-CD38 antibody mediated clearance of human repopulating cells masks the heterogeniety of leukemia-initiating cells Blood, 2008. 112:568–575.

    Article  PubMed  CAS  Google Scholar 

  58. Tomkinson B, Bendele R, Giles FJ, Brown E, Gray A, Hart K, LeRay JD, Meyer D, Pelanne M, Emerson DL. OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL. Leukemia Research, 2003. 27:1039–1050.

    Article  PubMed  CAS  Google Scholar 

  59. Gourdeau H, Bibeau L,Ouellet F,Custeau D,Bernier L, Bowlin T,. Comparative study of a novel nucleoside analogue (Troxatyl, troxacitabine, BCH-4556) and Ara-C against leukemic human tumour xenografts expressing high or low cytidine deaminase activity. Cancer Chemotherapy and Pharmacology, 2001. 47:236–240.

    Article  PubMed  CAS  Google Scholar 

  60. Myers DE, Chandan-Langlie M, Chelstrom LM, Uckun FM. In vitro and in vivo anti-leukemic efficacy of cyclic AMP modulating agents against human leukemic B cell precursors. Leukemia and Lymphoma, 1996. 22:259–264.

    Article  PubMed  CAS  Google Scholar 

  61. Chou T-C, Zhang X-G, Harris CR, Kuduk SD, Balog A, Savin KA, Bertino JR, Danishefsky SJ. Desoxyepothilone B is curative against human tumour xenografts that are refractory to paclitaxel. Procedures of the National Academy of Sciences USA, 1998. 95:15798–15802.

    Article  CAS  Google Scholar 

  62. Yoshida N, Ishii E, Nomizu M, Yamada Y, Mohri S, Kinukawa N, Matsuzaki A, Oshima K, Hara T, Miyazaki S. The laminin-derived peptide YIGSR (Tyr–Ile–Gly–Ser–Arg) inhibits human pre-B leukaemic cell growth and dissemination to organs in SCID mice. British Journal of Cancer, 1999. 80:1898–1904.

    Article  PubMed  CAS  Google Scholar 

  63. Uckun FM, Evans WE, Forsyth CJ, Waddick KG, Ahlgren LT, Chelstrom LM, Burkhardt A, Bolen J, Myers DE. Biotherapy of B-cell precursor leukemia by targeting genistein to CD-19 associated tyrosine kinases. Science, 1995. 267:886–891.

    Article  PubMed  CAS  Google Scholar 

  64. Waddick KG, Myers DE, Gunther R, Chelstrom LM, Cahandan-Langlie M, Irvin JD, Tumer N, Uckun FM. In vitro and in vivo antileukemic activity of B43-pokeweed antiviral protein against radiation-resistant human B-cell precursor leukemia cells. Blood, 1995. 86:4228–4233.

    PubMed  CAS  Google Scholar 

  65. Golay J, Di Gaetano N, Amico D, Cittera E, Barbui AM, Giavazzi R, Biondi A, Rambaldi A, Introna M. Gemtuzumab ozogamicin (Mylotarg) has therapeutic activity against CD33+ acute lymphoblastic leukemias in vitro and in vivo. British Journal of Haematology, 2005. 128:310–317.

    Article  PubMed  CAS  Google Scholar 

  66. Teachey DT, Obzut DA, Cooperman J, Fang J, Carroll M, Choi JK, Houghton PJ, Brown VI, Grupp SA. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood, 2006. 107:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  67. Cheung K-C, Wong L-G, Yeung, Y-M. Treatment of CD33 positive refractory acute lymphoblastic leukemia with Mylotarg. Leukemia and Lymphoma, 2008. 49:596–597.

    Article  PubMed  CAS  Google Scholar 

  68. Chicha L, Tussiwand R, Traggiai E, Mazzucchelli L, Bronz L, Piffaretti J-C, Lanzavecchia A, Manz MG. Human Adaptive Immune System rag2 -/-gamma(c) -/- mice. Annals of the New York Academy of Sciences, 2005. 1044:234–243.

    Article  Google Scholar 

  69. Kong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, Green J, Colman S, Piacibello W, Buckle V, Tsuzuki S, Greaves M, Enver T. Initiating and cancer propagating cells in TEL-AML1-associated childhood leukemia. Science, 2008. 319:336–339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef H. Vormoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this chapter

Cite this chapter

Batey, M.A., Vormoor, J.H. (2011). An Overview on Animal Models of ALL. In: Saha, V., Kearns, P. (eds) New Agents for the Treatment of Acute Lymphoblastic Leukemia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8459-3_6

Download citation

Publish with us

Policies and ethics