Skip to main content

Comparative Genome Analysis at the Sequence Level in the Brassicaceae

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

  • 2566 Accesses

Abstract

In the world of plant genome sequencing, the cultivated Brassica species have been relatively under-resourced compared with other crop species largely due to their position in the economic hierarchy of perceived importance. Thus, with the completion of the Arabidopsis thaliana genome in the year 2000, the limited sequencing efforts undertaken in the Brassica crops and other species of the Brassicaceae have been largely restricted either to survey sequencing of various insert size clones or to finished sequences of small genomic regions, generally as bacterial artificial chromosome (BAC) clones. In this chapter, we review the sequencing efforts to date and how they have been used in comparative analysis with the Arabidopsis genome and with each other to begin to understand the genome organisation of members of the crucifer family, how they relate to one another, and how they may have evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOP:

2-oxoglutarate-dependent dioxygenase

BAC:

Bacterial artificial chromosome

Col:

Columbia

DH:

Doubled haploid

EST:

Expressed sequence tag

FISH:

Fluorescence in situ hybridisation

GRP:

Glycine-rich pollen surface protein

InDel:

Insertion/deletion

kbp:

Kilo base pairs

Ler :

Landsberg erecta

LRR:

Leucine-rich repeat

Mbp:

Mega base pairs

MITE:

Miniature inverted repeat transposable elements

NB-LRR:

Nucleotide-binding leucine-rich repeat

rDNA:

Ribosomal DNA

R gene:

Disease resistance gene

RACE:

Rapid amplification of cDNA ends

RLK:

Receptor-like kinase

SNP:

Single nucleotide polymorphism

TAIR:

The Arabidopsis Information Resource

TRIM:

Terminal repeat retrotransposons in miniature

References

  • Acarkan A, Rossberg M, Koch M, Schmidt R (2000) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J 23:55–62

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ayele M, Haas BJ, Kumar N et al (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15:487–495

    Article  PubMed  Google Scholar 

  • Bakker EG, Toomajian C, Kreitman M, Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell. 18:1803–1818

    Article  CAS  PubMed  Google Scholar 

  • Bakker EG, Traw MB, Toomajian C et al (2008) Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana. Genetics 178:2031–2043

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Barakat A, Guyot R et al (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  • Boivin K, Acarkan A, Mbulu RS et al (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae. A comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135:735–744

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Formanová N, Jin H et al (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Trick M, Drou N et al (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  CAS  PubMed  Google Scholar 

  • Cho K, O’Neill CM, Kwon SJ et al (2010) Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci. Plant J 61:591–599

    Article  CAS  PubMed  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342

    Article  CAS  PubMed  Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T et al (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Li Y, Xia R et al (2009) Structural analysis of 83-kb genomic DNA from Thellungiella halophila: sequence features and microcolinearity between salt cress and Arabidopsis thaliana. Genomics 94:324–332

    Article  CAS  PubMed  Google Scholar 

  • Desloire S, Gherbi H, Laloui W et al (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  CAS  PubMed  Google Scholar 

  • Fiebig A, Kimport R, Preuss D (2004) Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci USA 101:3286–3291

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Li G, McCombie WR, Quiros CF (2005) Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A. thaliana. Theor Appl Genet 111:949–955

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Li G, Potter D et al (2006) Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. Plant Cell Rep 25:592–598

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Li G, Yang B, McCombie WR, Quiros C (2004) Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47:666–679

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, McDowell JM, Sharpe AG et al (1998) Independent deletions of a pathogen-resistance gene in Brassica and Arabidopsis. Proc Natl Acad Sci USA 95:15843–15848

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Wortman JR, Ronning CM et al (2005) Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 3:7

    Article  PubMed  Google Scholar 

  • Haberer G, Hindemitt T, Meyers BC et al. (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Mader MT, Kosarev P et al (2006) Large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea. Plant Physiol 142:1589–1602

    Article  CAS  PubMed  Google Scholar 

  • Hall AE, Keith KC, Hall SE et al (2004) The rapidly evolving field of plant centromeres. Curr Opin Plant Biol 7:108–114

    Article  CAS  PubMed  Google Scholar 

  • Hall AE, Kettler GC, Preuss D (2006) Dynamic evolution at pericentromeres. Genome Res 16:355–364

    Article  CAS  PubMed  Google Scholar 

  • Hall SE, Luo S, Hall AE, Preuss D (2005) Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170:1913–1927

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hong CP, Plaha P, Koo DH et al (2006) A Survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. Mol Cells 22:300–307

    PubMed  Google Scholar 

  • Inaba R, Nishio T (2002) Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet 105:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Jander G, Norris SR, Rounsley SD et al (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  CAS  PubMed  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE et al (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  CAS  PubMed  Google Scholar 

  • Katari MS, Balija V, Wilson RK et al (2005) Comparing low coverage random shotgun sequence data from Brassica oleracea and Oryza sativa genome sequence for their ability to add to the annotation of Arabidopsis thaliana. Genome Res 15:496–504

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Haubold M, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    CAS  PubMed  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544

    Article  CAS  PubMed  Google Scholar 

  • Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  CAS  PubMed  Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C et al (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed  Google Scholar 

  • Lysak MA, Berr A, Pecinka A et al (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM et al (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  PubMed  Google Scholar 

  • Moskal WA Jr, Wu HC, Underwood BA et al (2007) Experimental validation of novel genes predicted in the un-annotated regions of the Arabidopsis genome. BMC Genomics 8:18

    Article  PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed  Google Scholar 

  • Nah G, Pagliarulo CL, Mohr PG et al (2009) Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics 94:196–203

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:e196

    Article  PubMed  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  Google Scholar 

  • Ossowski S, Schneeberger K, Clark RM et al (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    Article  CAS  PubMed  Google Scholar 

  • Oyama R, Clauss MJ, Formanová N et al (2008) The shrunken genome of Arabidopsis thaliana. Plant Syst Evol 273:257–271

    Article  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Quiros CF, Grellet F, Sadowski J et al (2001) Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI1-Rps2-Ck1 chromosomal segment and related regions. Genetics 157:1321–1330

    CAS  PubMed  Google Scholar 

  • Rana D, van den Boogaart T, O‘Neill CM et al (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  CAS  PubMed  Google Scholar 

  • Rossberg M, Theres K, Acarkan A et al (2001) Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13:979–988

    Article  CAS  PubMed  Google Scholar 

  • Schein M, Yang Z, Mitchell-Olds T, Schmid K (2004) Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Mol Biol Evol 21:659–669

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Acarkan A, Boivin K et al (2003) The sequence of the Arabidopsis genome as a tool for comparative structural genomics in Brassicaceae. In: Nagata T, Tabata S (eds) Biotechnology in agriculture and forestry, vol 52, Brassica and Legumes, pp 19–36. Springer, Berlin/ Heidelberg

    Google Scholar 

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Windsor AJ, Song BH et al (2007) Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol 144:286–298 [Erratum in: Plant Physiol 144:1690]

    Article  CAS  PubMed  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P et al (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36 (Database issue):D1009–D1014

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Bowers JE, Wang X et al (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  PubMed  Google Scholar 

  • Town CD, Cheung F, Maiti R et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Trick M, Cheung F, Drou N et al (2009c) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50

    Article  PubMed  Google Scholar 

  • Trick M, Kwon SJ, Choi SR et al (2009a) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics 10:539

    Article  PubMed  Google Scholar 

  • Trick M, Long Y, Meng J et al (2009b) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    Article  CAS  PubMed  Google Scholar 

  • U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452

    Google Scholar 

  • Wang R, Farrona S, Vincent C et al (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427

    Article  CAS  PubMed  Google Scholar 

  • Warthmann N, Das S, Lanz C, Weigel D (2008) Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Mol Biol Evol 25:892–902

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Bio 10:107

    Article  Google Scholar 

  • Windsor AJ, Schranz ME, Formanová N et al (2006) Partial shotgun sequencing of the Boechera stricta genome reveals extensive microsynteny and promoter conservation with Arabidopsis. Plant Physiol 140:1169–1182

    Article  CAS  PubMed  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Yang TJ, Kim JS, Lim KB et al (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics 6:138–146

    Article  PubMed  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  CAS  PubMed  Google Scholar 

  • Yogeeswaran K, Frary A, York TL et al (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    Article  CAS  PubMed  Google Scholar 

  • Zeller G, Clark RM, Schneeberger K et al (2008) Detecting polymorphic regions in Arabidopsis thaliana with resequencing microarrays. Genome Res 18:918–929

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589–5594

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Robinson SJ, Huebert T et al (2007) Comparative genome organization reveals a single copy of CBF in the freezing tolerant crucifer Thlaspi arvense. Plant Mol Biol 65:693–705

    Article  CAS  PubMed  Google Scholar 

  • Ziolkowski PA, Koczyk G, Galganski L et al (2009) Genome sequence comparison of Col and Ler lines reveals the dynamic nature of Arabidopsis chromosomes. Nucleic Acids Res 37:3189–3201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on Brassicaceae genomics in the authors’ laboratories has been supported by grants from the United States National Science Foundation (DBI-9813586 and DBI-0638536), the German Federal Ministry of Education and Research (BMBF), and the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Town .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Town, C., Schmidt, R., Bancroft, I. (2011). Comparative Genome Analysis at the Sequence Level in the Brassicaceae. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_6

Download citation

Publish with us

Policies and ethics