Skip to main content

Arabidopsis lyrata Genetics

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Arabidopsis lyrata is a wild predominantly outcrossing perennial relative which diverged from Arabidopsis thaliana about 6 million years ago (MYA). The two species differ at 12% of synonymous nucleotide sites. A. lyrata has become a model organism for population and ecological genetics of outcrossing species. It has been used for studies of local adaptation and herbivore resistance. The genetics and evolution of the self-incompatibility system have been studied in detail. The complex demography and consequent highly diverged population structure set limits on the use of sequence variation and association studies for functional genomics. The full genome sequence has recently become available and will significantly broaden the opportunities for molecular evolutionary and functional genomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel C, Clauss M, Schaub A, Gershenzon J, Tholl D (2009) Floral and insect-induced volatile formation in Arabidopsis lyrata ssp petraea, a perennial, outcrossing relative of A. thaliana. Planta 230:1–11

    Article  CAS  PubMed  Google Scholar 

  • Awadalla P, Charlesworth D (1999) Recombination and selection at Brassica self-incompatibility loci. Genetics 152:413–425

    CAS  PubMed  Google Scholar 

  • Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M et al (2006a) Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Mol Ecol 15:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Bakker EG, Toomajian C, Kreitman M, Bergelson J (2006b) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18:1803–1818

    Article  CAS  PubMed  Google Scholar 

  • Balana-Alcaide D, Ramos-Onsins SE, Boone Q, Aguade M (2006) Highly structured nucleotide variation within and among Arabidopsis lyrata populations at the FAH1 and DFR gene regions. Mol Ecol 15:2059–2068

    Article  CAS  PubMed  Google Scholar 

  • Barrier M, Bustamante CD, Yu J, Purugganan MD (2003) Selection on rapidly evolving proteins in the Arabidopsis genome. Genetics 163:723–733

    CAS  PubMed  Google Scholar 

  • Beaulieu J, Jean M, Belzile F (2009) The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281:421–435

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13(4):969–980

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond 263:1619–1626

    Article  Google Scholar 

  • Berr A, Pecinka A, Meister A, Kreth G, Fuchs J et al (2006) Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant J 48:771–783

    Article  CAS  PubMed  Google Scholar 

  • Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD et al (2002) The cost of inbreeding in Arabidopsis. Nature 416:531–534

    Article  CAS  PubMed  Google Scholar 

  • Castric V, Bechsgaard J, Schierup MH, Vekemans X (2008) Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet 4:9

    Article  CAS  Google Scholar 

  • Charlesworth B (1998) Measures of divergence between populations and the effect of forces that reduce variability. Mol Biol Evol 15:538–543

    CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D, Barton NH (2003a) The effects of geographic and genetic structure on neutral genetic variation. Annu Rev Ecol Syst 34:99–125

    Article  Google Scholar 

  • Charlesworth D, Mable BK, Schierup MH, Bartolome C, Awadalla P (2003b) Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata. Genetics 164: 1519–1535

    CAS  PubMed  Google Scholar 

  • Charlesworth D, Wright SI (2001) Breeding system and genome evolution. Curr Opin Genet Dev 11:685–690

    Article  CAS  PubMed  Google Scholar 

  • Clauss MJ, Dietel S, Schubert G, Mitchell-Olds T (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    Article  CAS  PubMed  Google Scholar 

  • Clauss MJ, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trends Plant Sci 11:449–459

    Article  CAS  PubMed  Google Scholar 

  • Clauss MJ, Mitchell-Olds T (2003) Population genetics of tandem trypsin inhibitors in Arabidopsis species with contrasting ecology and life history. Mol Ecol 12:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Clauss MJ, Mitchell-Olds T (2006) Population genetic structure of Arabidopsis lyrata in Europe. Mol Ecol 15:2753–2766

    Article  CAS  PubMed  Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438

    Article  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N et al (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  CAS  PubMed  Google Scholar 

  • Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K (2009) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Heidelberg

    Google Scholar 

  • Davey MP, Burrell MM, Woodward FI, Quick WP (2008) Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytol 177:380–388

    CAS  PubMed  Google Scholar 

  • Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  CAS  Google Scholar 

  • Ericson L, Mascher JW (1978) Cardaminopsis petraea, strandtrav, i Ångermanland. Svensk Botanisk Tidsrift 71:415–418

    Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351

    Article  PubMed  Google Scholar 

  • Foxe JP, Dar VUN, Zheng H, Nordborg M, Gaut BS et al (2008) Selection on amino acid substitutions in Arabidopsis. Mol Biol Evol 25:1375–1383

    Article  CAS  PubMed  Google Scholar 

  • Gaudeul M, Stenoien HK, Agren J (2007) Landscape structure, clonal propagation, and genetic diversity in Scandinavian populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 94: 1146–1155

    Article  Google Scholar 

  • Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Gos G, Wright SI (2008) Conditional neutrality at two adjacent NBS-LRR disease resistance loci in natural populations of Arabidopsis lyrata. Mol Ecol 17:4953–4962

    Article  PubMed  Google Scholar 

  • Hansson B, Kawabe A, Preuss S, Kuittinen H, Charlesworth D (2006) Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: recombination rates, rearrangements and centromere location. Genet Res 87:75–85

    Article  CAS  PubMed  Google Scholar 

  • Hauser MT, Harr B, Schlotterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1. Mol Biol Evol 18:1754–1763

    CAS  PubMed  Google Scholar 

  • Heidel AJ, Clauss MJ, Kroymann J, Savolainen O, Mitchell-Olds T (2006) Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. Genetics 173:1629–1636

    Article  CAS  PubMed  Google Scholar 

  • Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution. Oxford University Press, New York, NY

    Google Scholar 

  • Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E et al (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016

    Article  PubMed  Google Scholar 

  • Hoffman MH (2005) Evolution of the realized niche in the genus Arabidopsis (Brassicaceae). Evolution 59:1425–1436

    Google Scholar 

  • Hudson RR (1990) Gene genealogies and the coalescent process. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, pp 1–44. Oxford University Press, New York, NY

    Google Scholar 

  • Jalas J, Suominen J (1994) Atlas Florae Europaeae. Cruciferae (Sisymbrium to Aubrieta). Helsinki University Printing House, Helsinki

    Google Scholar 

  • Jonsell B, Kustås K, Nordal I (1995) Genetic variation in Arabis petraea, a disjunct species in northern Europe. Ecography 18:321–332

    Article  Google Scholar 

  • Jorgensen TH, Emerson BC (2009) RPW8 and resistance to powdery mildew pathogens in natural populations of Arabidopsis lyrata. New Phytol 182:984–993

    Article  CAS  Google Scholar 

  • Kärkkäinen K, Ågren J (2002) Genetic basis of trichome production in Arabidopsis lyrata. Hereditas 136:219–226

    Article  PubMed  Google Scholar 

  • Kärkkäinen K, Kuittinen H, van Treuren R, Vogl C, Oikarinen S et al (1999) Genetic basis of inbreeding depression in Arabis petraea. Evolution 53:1354–1365

    Article  Google Scholar 

  • Kärkkäinen K, Loe G, Ågren J (2004) Population structure of Arabidopsis lyrata: evidence for divergent selection on trichome production. Evolution 58:2831–2836

    PubMed  Google Scholar 

  • Kawabe A, Charlesworth D (2007a) Diversity patterns of the Medea gene in Arabidopsis lyrata. Genes Genet Syst 82:528–528

    Google Scholar 

  • Kawabe A, Charlesworth D (2007b) Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and lyrata. J Mol Evol 64(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Forrest A, Wright SI, Charlesworth D (2008) High DNA sequence diversity in pericentromeric genes of the plant Arabidopsis lyrata. Genetics 179:985–995

    Article  CAS  PubMed  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM et al (2007) Recombination and linkage disequilibrium in Arabidopsis. Nat Genet 39:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Kivimäki M, Karkkainen K, Gaudeul M, Loe G, Agren J (2007) Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol Ecol 16:453–462

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Vogel H, Kroymann J, Shumate A, Witsenboer H et al (2006) Expression profiling and local adaptation of Boechera holboellii populations for water use efficiency across a naturally occurring water stress gradient. Mol Ecol 15:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bishop J, Mitchell-Olds T (1999) Molecular systematics and evolution of Arabidopsis and Arabis. Plant Biol 1:529–537

    Article  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    CAS  PubMed  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding platid MatK and nuclear CHS. Am J Bot 88:534–544

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species – Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot 92:761–767

    Article  Google Scholar 

  • Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:6272–6277

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–943

    Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppälä J et al (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and Arabidopsis thaliana. Genetics 168:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Kuittinen H, Niittyvuopio A, Rinne P, Savolainen O (2008) Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism. Mol Biol Evol 25:319–329

    Article  CAS  PubMed  Google Scholar 

  • Kunin WE, Vergeer P, Kenta T, Davey MP, Burke T et al (2009) Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype. Proc R Soc Lond B Biol Sci 276:1495–1506

    Article  Google Scholar 

  • Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB et al (2001) Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13:627–643

    Article  CAS  PubMed  Google Scholar 

  • Le Corre V (2005) Variation at two flowering time genes within and among populations of Arabidopsis thaliana: comparison with markers and traits. Mol Ecol 14:4181–4192

    Article  PubMed  CAS  Google Scholar 

  • Le Corre V, Roux F, Reboud X (2002) DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol 19:1261–1271

    PubMed  Google Scholar 

  • Leinonen P, Sandring S, Quilot B, Clauss MJ, Mitchell-Olds T et al (2009) Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 96:1129–1137

    Article  Google Scholar 

  • Lockton S, Ross-Lbarra J, Gaut BS (2008) Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc Natl Acad Sci USA 105:13965–13970

    Article  CAS  PubMed  Google Scholar 

  • Loe G, Torang P, Gaudeul M, Agren J (2007) Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos 116:134–142

    Article  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Lundemo S, Savolainen O, Stenoien HK (2010) Investigating the effects of topography and clonality on genetic structuring within a large Norwegian population of Arabidopsis lyrata. Ann Bot 106:243–254

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K et al (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    Article  CAS  PubMed  Google Scholar 

  • Mable BK (2004) Polyploidy and self-compatibility: is there an association? New Phytol 162:803–811

    Article  Google Scholar 

  • Mable BK, Adam A (2007) Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol Ecol 16:3565–3580

    Article  CAS  PubMed  Google Scholar 

  • Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59:1437–1448

    PubMed  Google Scholar 

  • Mable BK, Schierup MH, Charlesworth D (2003) Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata (Brassicaceae) with sporophytic control of self-incompatibility. Heredity 90:422–431

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700

    Article  Google Scholar 

  • Miyake T, Takebayashi N, Salter D, Wolf ED (2007) Natural selection on imprinted genes in outcrossing Arabidopsis lyrata and self-fertilizing A. thaliana. Genes Genet Syst 82: 543–543

    Article  Google Scholar 

  • Muller MH, Leppala J, Savolainen O (2008) Genome-wide effects of postglacial colonization in Arabidopsis lyrata. Heredity 100:47–58

    Article  CAS  PubMed  Google Scholar 

  • Mĕsiček J (1967) The chromosome morphology of Arabidopsis thaliana (L.) Heynh. and some remarks on the problem of Hylandra suecica (Fr.) Love. Folia Geobotanica Phytotaxonomica 2:433–436

    Google Scholar 

  • Mĕsiček J (1970) Chromosome counts in Cardamine arenosa agg (Cruciferae). Preslia 42:225–248

    Google Scholar 

  • Nasrallah ME, Liu P, Nasrallah JB (2002) Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297:247–249

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah ME, Yogeeswaran K, Snyder S, Nasrallah JB (2000) Arabidopsis species hybrids in the study of species differences and evolution of amphiploidy in plants. Plant Physiol 124: 1605–1614

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Borewitz JO, Bergelson J, Berry C, Chory J et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Juahveri J, Toomajian C et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:1289–1299

    Article  CAS  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    Article  CAS  PubMed  Google Scholar 

  • O’Kane SL, Al-Shehbaz IA (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7:323–327

    Article  Google Scholar 

  • O’Kane SL, Al-Shehbaz IA (2003) Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann Mo Bot Gard 90:603–612

    Article  Google Scholar 

  • Orr HA (1998) The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52:935–949

    Article  Google Scholar 

  • Peer WA, Murphy AS (2003) Floral scent of Arabidopsis lyrata (Brassicaceae). Biochem Syst Ecol 31:1193–1195

    Article  CAS  Google Scholar 

  • Polatchek A (1966) Cytotaxonomische Beiträge zur Flora der Ostalpenländer I. Österreichische Botanische Zeitschrift 113:1–44

    Article  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A et al (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. PNAS 101:18240–18245

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Onsins SE, Stranger BE, Mitchell-Olds T, Aguadé M (2004) Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata. Genetics 166:373–388

    Article  CAS  PubMed  Google Scholar 

  • Redei GP (1974) Is Hylandra an amphidiploid of Arabidopsis and Cardaminopsis arenosa? Arabidopsis Inf Serv 11:5

    Google Scholar 

  • Riihimäki M, Kuittinen H, Podolsky RH, Koelewijn H, Savolainen O (2005) Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata. Genetica 123:63–74

    Article  PubMed  Google Scholar 

  • Riihimäki M, Savolainen O (2004) Environmental and genetic effects on flowering differences between northern and southern populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 91:1036–1045

    Article  Google Scholar 

  • Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L et al (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3:e2411

    Article  PubMed  CAS  Google Scholar 

  • Sandring S, Agren J (2009) Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata. Evolution 63:1292–1300

    Article  PubMed  Google Scholar 

  • Sandring S, Riihimäki MA, Savolainen O, Ågren J (2007) Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J Evol Biol 20:558–567

    Article  CAS  PubMed  Google Scholar 

  • Savolainen O, Langley CH, Lazzaro B, Freville H (2000) Contrasting patterns of nucleotide variation at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol 17:645–655

    CAS  PubMed  Google Scholar 

  • Schierup MH (1998) The effect of enzyme heterozygosity on growth in a strictly outcrossing species, the self-incompatible Arabis petraea (Brassicaceae). Hereditas 128:21–31

    Article  CAS  Google Scholar 

  • Schierup MH, Bechsgaard JS, Christiansen FB (2008) Selection at work in self-incompatible Arabidopsis lyrata. II. Spatial distribution of S haplotypes in Iceland. Genetics 180:1051–1059

    Article  PubMed  Google Scholar 

  • Schierup MH, Bechsgaard JS, Nielsen LH, Christiansen FB (2006) Selection at work in self-incompatible Arabidopsis lyrata: mating patterns in a natural population. Genetics 172:477–484

    Article  CAS  PubMed  Google Scholar 

  • Schierup MH, Mable BK, Awadalla P, Charlesworth D (2001) Identification and characterization of a polymorphic receptor kinase gene linked to the self-incompatibility locus of Arabidopsis lyrata. Genetics 158:387–399

    CAS  PubMed  Google Scholar 

  • Schmickl R, Jorgensen MH, Brysting AK, Koch MA (2008) Phylogeographic implications for the North American boreal-arctic Arabidopsis lyrata complex. Plant Ecol Divers 1:245–254

    Article  Google Scholar 

  • Schmid KJ, Ramos-Onsins S, Ringys-Beckstein H, Weisshaar B, Mitchell-Olds T (2005) A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics 169:1601–1615

    Article  CAS  PubMed  Google Scholar 

  • Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA 88:4494–4497

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Dobes C, Koch MA, Mitchell-Olds T (2005) Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810

    Article  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of cruciefer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Shimizu-Inatsugi R, Lihová J, Iwanaga H, Kudoh H, Marhold K et al (2009) The allopolyploid Arabidopsis kamchatica originated from multiple individuals of A. lyrata and A. halleri. Mol Ecol 18(19):4024–4048

    Article  CAS  PubMed  Google Scholar 

  • Shimizu KK, Fujii S, Marhold K, Watanabe K, Kudoh H (2005) Arabidopsis kamchatica (Fish. ex EC) K. Shimizu Kudoh and A. kamchatica subsp. kawasakiana (Makino) K. Shimizu Kudoh, new combinations. Acta Phytotox Geobot 56:165–174

    Google Scholar 

  • Shimizu KK, Shimizu-Inatsugi R, Tsuchimatsu T, Purugganan MD (2008) Independent origins of self-compatibility in Arabidopsis thaliana. Mol Ecol 17:704–714

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1999) Disequilibrium mapping of a quantitative-trait locus in an expanding population. Am J Hum Genet 64:1765–1773

    Article  CAS  Google Scholar 

  • Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo J-M et al (2007) Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448:349–352

    Article  CAS  PubMed  Google Scholar 

  • Stenøien HK, Fenster CB, Tonteri A, Savolainen O (2005) Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Mol Ecol 14:137–148

    Article  PubMed  CAS  Google Scholar 

  • Tang CL, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL et al (2007) The evolution of selfing in Arabidopsis thaliana. Science 317:1070–1072

    Article  CAS  PubMed  Google Scholar 

  • Turner TL, von Wettberg EJ, Nuzhdin SV (2008) Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS One 3:e3183

    Article  PubMed  CAS  Google Scholar 

  • Van Treuren R, Kuittinen H, Kärkkäinen K, Baena-Gonzalez E, Savolainen O (1997) Evolution of microsatellites in Arabis petraea and A. lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol 14:220–229

    PubMed  Google Scholar 

  • Vergeer P, van den Berg LLJ, Bulling MT, Ashmore MR, Kunin WE (2008) Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea. New Phytol 179:129–141

    Article  CAS  PubMed  Google Scholar 

  • Wang RH, Farrona S, Vincent C, Joecker A, Schoof H et al (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427

    Article  CAS  PubMed  Google Scholar 

  • Wilkins JF, Haig D (2003) What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 4:359–368

    Article  CAS  PubMed  Google Scholar 

  • Willems G, Drager DB, Courbot M, Gode C, Verbruggen N et al (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674

    Article  CAS  PubMed  Google Scholar 

  • Windsor AJ, Reichelt M, Figuth A, Svatos A, Kroymann J et al (2005) Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Phytochemistry 66:1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8: 206–216

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation-by-distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF et al (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Foxe JP, DeRose-Wilson L, Kawabe A, Looseley M et al (2006) Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata. Genetics 174:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Lauga B, Charlesworth D (2002) Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol Biol Evol 19:1407–1420

    CAS  PubMed  Google Scholar 

  • Wright S, Lauga B, Charlesworth D (2003) Subdivision and haplotype structure in natural populations of Arabidopsis lyrata. Mol Ecol 12:1247–1263

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Le QH, Schoen DJ, Bureau TE (2001) Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis. Genetics 158:1279–1288

    CAS  PubMed  Google Scholar 

  • Wright SI, Nano N, Foxe JP, Dar VU (2008) Effective population size and tests of neutrality at cytoplasmic genes in Arabidopsis. Genet Res 90:119–128

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Yau CBK, Looseley M, Meyers BC (2004) Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol Biol Evol 21:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH et al (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    Article  CAS  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Sung K, Lister C, Shindo C et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Biocenter, University of Oulu, the Biosciences and Environment Research Council of Finland, the ERA-Net Plant Genomics Program ARelatives for financial support of our research, and our Oulu University plant genetics group members and David Remington for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Outi Savolainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Savolainen, O., Kuittinen, H. (2011). Arabidopsis lyrata Genetics. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_12

Download citation

Publish with us

Policies and ethics