Skip to main content
Book cover

Biomechanics pp 226–274Cite as

Respiratory Gas Flow

  • Chapter

Abstract

This chapter is focused on the flow of gas into and out of the mammalian lung. We study the airway tree shown in Fig. 5.2:2. In the airway, the mixing of gases is given particular attention. In alveoli, the exchange of O2 and CO2 between alveolar gas and red blood cells is discussed. The effectiveness of this exchange depends on the matching of ventilation and circulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bates, C.V., Macklem, P.T., and Christie, R.V. (1971). Respiratory Function in Disease. Saunders, Philadelphia.

    Google Scholar 

  • Bohn, D.J., Miyasaka, K., Marchak, B.E., Thompson, W.K., Froese, A.B., and Bryan, A.C. (1980). Ventilation by high frequency oscillation. J. Appl. Physiol.: Respir. Environ. Exer. Physiol. 48: 710–716.

    Google Scholar 

  • Briscoe, W.A., Forster, R.E., and Comroe, J.H. (1954). Alveolar ventilation at very low tidal volumes. J. Applied Physiol. 7: 27–30.

    Google Scholar 

  • Brown, F.T. (1962). The transient response of fluid lines. J. Basic Engineering 84: 547–553.

    Article  Google Scholar 

  • Chang, H.K. (1984). Mechanics of gas transport during ventilation by high frequency oscillation. J. Appl. Physiol. 56: 553–563.

    Google Scholar 

  • Chang, H.K., Cheng, R.T., and Farhi, L.E. (1973). A model study of gas diffusion in alveolar sacs. Respiration Phys. 18: 386–397.

    Article  Google Scholar 

  • Chang, H.K., Isabey, D., Shykoff, B.E., and Harf, A. (1984). Gas mixing during high frequency oscillation. In Biomechanics in China, Japan and USA. (Y.C. Fung, J.J. Wang, and E. Fukada, eds.), Science Press, Peaking, pp. 264–280.

    Google Scholar 

  • Chang, H.K., Tai, R.C., and Farhi, L.E. (1975). Some simplifications of ternary diffusion in the lung. Respiration Phys. 23: 109–120.

    Article  Google Scholar 

  • Chatwin, P.C. (1975). On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes. J. Fluid Mech. 71: 513–527.

    Article  ADS  MATH  Google Scholar 

  • Cumming, G., Henderson, R., Horsfield, K., and Singhal, S.S. (1968). The functional morphology of the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space ( A. Fishman and H. Hecht, eds.), University Chicago Press, Chicago, pp. 327–338.

    Google Scholar 

  • Cumming, G. and Semple, S.J. (1973). Disorders of the Respiratory System. Blackwell Sci. Pub., London.

    Google Scholar 

  • Dubois, A.B. (1964). Resistance to breathing. In Handbook of Physiology, Sec. 3 Respiration, Vol.1 ( W.O. Fenn and H. Rahn, eds.). Amer. Physiol. Soc. Washington, D.C. 1964, pp. 451–462.

    Google Scholar 

  • Fenn, W.O. and Rahn, H. (eds.) (1964). Handbook of Physiology Sec. 3 Respiration, Vols. 1 2., 1696 pp. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Fishman, A., Macklem, P., and Mead, J. (eds.) (1986). Handbook of Physiology, Sec. 3. Respiration. Amer. Physiol. Soc. Washington, D.C.

    Google Scholar 

  • Fry, D.L. and Hyatt, R.E. (1960). Pulmonary mechanics. A unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects. Amer. J. Med. 29: 672–689.

    Article  Google Scholar 

  • Fung, Y.C. (1977). A First Course in Continuum Mechanics, 2nd edn. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fung, Y.C. (1983). Biodynamics: Circulation. Springer-Verlag, New York.

    Google Scholar 

  • Henderson, Y., Chillingworth, F.P., and Whitney, J.L. (1915). The respiratory dead space. Amer. J. Physiol. 38: 1–19.

    Google Scholar 

  • Hirschfelder, J.O., Curtis, C.F., and Bird, R.B. (1954). Molecular Theory of Gases and Liquids. Wiley, New York.

    MATH  Google Scholar 

  • Hyatt, R.E., Schilder, D.P., and Fry, D.L. (1958). Relationship between maximum expiratory flow and degree of lung inflation. J. Appl. Physiol. 13: 331–336.

    Google Scholar 

  • Jaeger, M.J. and Matthys, H. (1968 69). The patten of flow in the upper human airways. Respiration Phys. 6: 113–127.

    Google Scholar 

  • Krogh, M. (1914 15). The diffusion of gases through the lungs of man. J. Physiol (London) 49: 271–300.

    Google Scholar 

  • Lee, J.S. (1984). The mixing and axial transport of smoke in oscillatory tube flows. Annals of Biomed. Eng. 12: 371–383.

    Article  Google Scholar 

  • Lee, J.S. (1984). A transient analysis of gas transport in oscillatory tube flows. In Biomechanics in China, Japan, and USA (Y.C. Fung, J.J. Wang, and E. Fukada, eds.). Science Press, Peking, pp. 254–263.

    Google Scholar 

  • Otis, A.B., McKerrow, C.B., Bartlett, R.A., Mead, J., Mcllroy, M.B., Selverstone, N.J., and Radford, E.P., Jr. (1956). Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol. 8: 427–443.

    Google Scholar 

  • Pedley, T.J., Schroter, R.C., and Sudlow, M.F. (1971). Flow and pressure drop in systems of repeatedly branching tubes. J. Fluid Mech. 46: 365–383.

    Article  ADS  Google Scholar 

  • Pedley, T.J., Schroter, R.C., and Sudlow, M.F. (1977). Gas flow and mixing in the airways. In Bioengineering Aspects of the Lung ( J.B. West, ed.), Marcel Dekker, New York, pp. 163–265.

    Google Scholar 

  • Prasad, S.N. and Herrmann, G. (1969). The usefulness of adjoint systems in solving nonconserva-tive stability problems. Int. J. Solids and Struct. 5: 727–735.

    Article  MATH  Google Scholar 

  • Prasad, S.N. and Herrmann, G. (1972). Adjoint variational methods in nonconservative stability problems. Int. J. Solids and Struct. 8: 29–40.

    Article  MATH  Google Scholar 

  • Pride, N.B., Permutt, S., Riley, R.L., and Bromberger-Barnea, B. (1967). Determinants of maximal expiratory flow from the lungs. J. Appl. Physiol. 23: 646–662.

    Google Scholar 

  • Roughton, F.J.W. and Forster, R.E. (1957). Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung. J. Appl. Physiol. 11: 291–302.

    Google Scholar 

  • Scherer, P.W. and Haselton, F.R. (1982). Convective exchange in oscillatory flow through bronchial-tree models. J. Appl. Physiol.: Respir. Environ. Exer. Physiol. 53 (4): 1023–1033.

    Google Scholar 

  • Schmid-Schoenbein, G. and Fung, Y.C. (1978). Forced perturbation of respiratory system. (A) The traditional model. Annals of Biomed. Eng. 6: 194–211. (B) A continuum mechanics analysis. ibid, 6: 367–398.

    Google Scholar 

  • Seguchi, Y., Fung, Y.C., and Maki, H. (1984). Computer simulation of dynamics of fluid-gas-tissue systems with a discretization procedure and its application to respiration dynamics. In Biomechanics in China, Japan, and USA ( Y.C. Fung, E. Fukada, J.J. Wang, eds.). Chinese Science Press, Beijing, pp. 224–239.

    Google Scholar 

  • Seguchi, Y., Fung, Y.C. and Ishida, T. (1986). Respiratory Dynamics-Compter simulation. In Frontiers in Biomechanics ( G.W. Schmid-Schönbein, S.L.Y. Woo, B.M. Zweifach, eds). Springer Verlag, New York, pp. 377–391.

    Chapter  Google Scholar 

  • Slutsky, A.A., Drazen, J.M., Ingram, R.H., Jr., Kamm, R.D., Shapiro, A.H., Fredberg, J.J., Loring, S.H., and Lehr, J. (1980). Effective pulmonary ventilation with small-volume oscillations at high frequency. Science 209: 609–611.

    Article  ADS  Google Scholar 

  • Slutsky, A.S., Kamm, R.D., Rossing, T.H., Loring, S.H., Lehr, J., Shapiro, A.H., and Ingram, R.H., Jr. (1981). Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2–30 Hz) low tidal volume ventilation. Clin. Invest. 68: 1475–1484.

    Article  Google Scholar 

  • Stewart, G.N. (1893). Researches on the circulation time in organs and on the influences which affect it. J. Physiol. (London)15:1–30. II. Time of the lesser circulation, 15:31–72. III. Thyroid gland, 15: 73–89. The output of the heart, 22: (1900) 159–173.

    Google Scholar 

  • Streeter, V.L. and Wylie, E.B. (1967). Hydraulic Transients. McGraw-Hill, New York.

    Google Scholar 

  • Taylor, G.I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. (London), Series A, 219: 186–203.

    Article  ADS  Google Scholar 

  • Taylor, G.I. (1954). The dispersion of matter in turbulent flow through a pipe. Proc. Roy. Soc. (London), Series A., 223: 446–468.

    Article  ADS  Google Scholar 

  • Tisi, G.M. (1980). Pulmonary Physiology in Clinical Medicine. Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Van der Pol, B. and Bremmer, H. (1950). Operational Calculus, Cambridge University Press, London New York, pp. 305–307.

    MATH  Google Scholar 

  • Wagner, P.P. and West, J.B. (1972). Effects of diffusion impairment on 02 and CO2 time courses in pulmonary capillaries. J. Applied Physiol. 33: 62–71.

    Google Scholar 

  • Weibel, E.R. (1963). Morphometry of the Human Lung. Academic Press, New York.

    Google Scholar 

  • West, J.B. (1974). Respiratory Physiology-The Essentials. Williams and Wilkins, Baltimore. West, J.B. (1982). Pulmonary Pathophysiology-the essentials. 2nd ed. Williams and Wilkins,Baltimore.

    Google Scholar 

  • West, J.B. and Wagner, P.D. (1977). Pulmonary gas exchange. In Bioengineering Aspects of the Lung ( J.B. West, ed.), Marcel Dekker, New York, pp. 361–457.

    Google Scholar 

  • Whittle, P. (1971). Otpimization Under Constraints: Theory and Applications of Nonlinear Programming. Wiley-Interscience, London, New York.

    Google Scholar 

  • Winter, D.C. and Nerem, R.M. (1984). Turbulence in pulsatile flows. Annals of Biomed. Eng. 12: 357–369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1990). Respiratory Gas Flow. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6856-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6856-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5913-6

  • Online ISBN: 978-1-4419-6856-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics