Skip to main content

Inherited Defects of Immunoglobulin Class Switch Recombination

  • Chapter
Diseases of DNA Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 685))

Abstract

The investigation of an inherited primary immunodeficiency, the immunoglobulin class switch recombination deficiency, has allowed the delineation of complex molecular events that underlie antibody maturation in humans. The Activation-induced cytidine deaminase (AID)-deficiency, characterized by a defect in Class Switch Recombination (CSR) and somatic hypermutation, has revealed the master role of this molecule in the induction of DNA damage, the first step required for these two processes. The description that mutations in the gene encoding the Uracil-DNA glycosylase (UNG) lead to defective CSR has been essential for defining the DNA-editing activity of AID. Analysis of post meiotic segregation 2 (PMS2)-deficient patients gave evidence for the role of this mismatch repair enzyme in the generation of the DNA breaks that are required for CSR. Novel findings are awaited from the study of yet-genetically undefined CSR-deficiencies, probably leading to the identification of AID cofactor(s) and/or proteins involved in CSR-induced DNA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tonegawa S. Somatic generation of antibody diversity. Nature 1983; 302:575–581.

    Article  CAS  PubMed  Google Scholar 

  2. Kinoshita K, Honjo T. Unique and unprecedented recombination mechanisms in class switching. Curr Opin Immunol 2000; 12:195–198.

    Article  CAS  PubMed  Google Scholar 

  3. Storb U, Peters A, Klotz E et al. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev 1998; 162:153–160.

    Article  CAS  PubMed  Google Scholar 

  4. Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996; 381:751–758.

    Article  CAS  PubMed  Google Scholar 

  5. Vinuesa CG, Tangye SG, Moser B et al. Follicular B helper T-cells in antibody responses and autoimmunity. Nat Rev Immunol 2005; 5:853–865.

    Article  CAS  PubMed  Google Scholar 

  6. Korthauer U, Graf D, Mages HW et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 1993; 361:539–541.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari S, Giliani S, Insalaco A et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA 2001; 98:12614–12619.

    Article  CAS  PubMed  Google Scholar 

  8. Doffinger R, Smahi A, Bessia C et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 2001; 27:277–285.

    Article  CAS  PubMed  Google Scholar 

  9. Muramatsu M, Sankaranand VS, Anant S et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B-cells. J Biol Chem 1999; 274:18470–18476.

    Article  CAS  PubMed  Google Scholar 

  10. Okazaki IM, Kinoshita K, Muramatsu M et al. The AID enzyme induces class switch recombination in fibroblasts. Nature 2002; 416:340–345.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshikawa K, Okazaki IM, Eto T et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 2002; 296:2033–2036.

    Article  CAS  PubMed  Google Scholar 

  12. Ito S, Nagaoka H, Shinkura R et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci USA 2004; 101:1975–1980.

    Article  CAS  PubMed  Google Scholar 

  13. McBride KM, Barreto V, Ramiro AR et al. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med 2004; 199:1235–1244.

    Article  CAS  PubMed  Google Scholar 

  14. Brar S, Watson M, Diaz M. Activation-induced cytosine deaminase, AID, is actively exported out of the nucleus but retained by the induction of DNA breaks. J Biol Chem 2004.

    Google Scholar 

  15. Aoufouchi S, Faili A, Zober C et al. Proteasomal degradation restricts the nuclear lifespan of AID. J Exp Med 2008; 205:1357–1368.

    Article  CAS  PubMed  Google Scholar 

  16. Muramatsu M, Kinoshita K, Fagarasan S et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102:553–563.

    Article  CAS  PubMed  Google Scholar 

  17. Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002; 418:99–103.

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhuri J, Tian M, Khuong C et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003; 422:726–730.

    Article  CAS  PubMed  Google Scholar 

  19. Ramiro AR, Stavropoulos P, Jankovic M et al. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 2003; 4:452–456.

    Article  CAS  PubMed  Google Scholar 

  20. Dickerson SK, Market E, Besmer E et al. AID Mediates Hypermutation by Deaminating Single Stranded DNA. J Exp Med 2003; 197:1291–1296.

    Article  CAS  PubMed  Google Scholar 

  21. Bransteitter R, Pham P, Scharff MD et al. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 2003; 100:4102–4107.

    Article  CAS  PubMed  Google Scholar 

  22. Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002; 418:99–104.

    Article  CAS  PubMed  Google Scholar 

  23. Rada C, Williams GT, Nilsen H et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 2002; 12:1748–1755.

    Article  CAS  PubMed  Google Scholar 

  24. Imai K, Slupphaug G, Lee WI et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 2003; 4:1023–1028.

    Article  CAS  PubMed  Google Scholar 

  25. Shen HM, Ratnam S, Storb U. Targeting of the activation-induced Cytosine deaminase is strongly influenced by the sequence and structure of the targeted DNA. Mol Cell Biol 2005; 25:10815–10821.

    Article  CAS  PubMed  Google Scholar 

  26. Basu U, Chaudhuri J, Alpert C et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 2005; 438:508–511.

    Article  CAS  PubMed  Google Scholar 

  27. Vuong BQ, Lee M, Kabir S et al. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat Immunol 2009; 10:420–426.

    Article  CAS  PubMed  Google Scholar 

  28. Revy P, Muto T, Levy Y et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000; 102:565–575.

    Article  CAS  PubMed  Google Scholar 

  29. Fagarasan S, Muramatsu M, Suzuki K et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 2002; 298:1424–1427.

    Article  CAS  PubMed  Google Scholar 

  30. Quartier P, Bustamante J, Sanal O et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin Immunol 2004; 110:22–29.

    Article  CAS  PubMed  Google Scholar 

  31. Catalan N, Selz F, Imai K et al. The block in immunoglobulin class switch recombination caused by activation-induced cytidine deaminase deficiency occurs prior to the generation of DNA double strand breaks in switch mu region. J Immunol 2003; 171:2504–2509.

    CAS  PubMed  Google Scholar 

  32. Ta VT, Nagaoka H, Catalan N et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol 2003; 4:843–848.

    Article  CAS  PubMed  Google Scholar 

  33. Barreto V, Reina-San-Martin B, Ramiro AR et al. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell 2003; 12:501–508.

    Article  CAS  PubMed  Google Scholar 

  34. Imai K, Zhu Y, Revy P et al. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol 2005; 115:277–285.

    Article  CAS  PubMed  Google Scholar 

  35. Di Noia J, Neuberger MS. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 2002; 419:43–48.

    Article  PubMed  Google Scholar 

  36. Guikema JE, Linehan EK, Tsuchimoto D et al. APE1-and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med 2007; 204:3017–3026.

    Article  CAS  PubMed  Google Scholar 

  37. Zeng X, Winter DB, Kasmer C et al. DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol 2001; 2:537–541.

    Article  CAS  PubMed  Google Scholar 

  38. Zan H, Komori A, Li Z et al. The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation. Immunity 2001; 14:643–653.

    Article  CAS  PubMed  Google Scholar 

  39. Schenten D, Kracker S, Esposito G et al. Pol zeta ablation in B-cells impairs the germinal center reaction, class switch recombination, DNA break repair and genome stability. J Exp Med 2009; 206:477–490.

    Article  CAS  PubMed  Google Scholar 

  40. Zan H, Shima N, Xu Z et al. The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation. EMBO J 2005; 24:3757–3769.

    Article  CAS  PubMed  Google Scholar 

  41. Masuda K, Ouchida R, Takeuchi A et al. DNA polymerase theta contributes to the generation of C/G mutations during somatic hypermutation of Ig genes. Proc Natl Acad Sci USA 2005; 102:13986–13991.

    Article  CAS  PubMed  Google Scholar 

  42. Rada C, Di Noia JM, Neuberger MS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 2004; 16:163–171.

    Article  CAS  PubMed  Google Scholar 

  43. Kavli B, Andersen S, Otterlei M et al. B-cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J Exp Med 2005; 201:2011–2021.

    Article  CAS  PubMed  Google Scholar 

  44. Nilsen H, Stamp G, Andersen S et al. Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas. Oncogene 2003; 22:5381–5386.

    Article  CAS  PubMed  Google Scholar 

  45. Begum NA, Stanlie A, Doi T et al. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination. Proc Natl Acad Sci USA 2009; 106:2752–2757.

    Article  CAS  PubMed  Google Scholar 

  46. Ehrenstein MR, Rada C, Jones AM et al. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination. Proc Natl Acad Sci USA 2001; 98:14553–14558.

    Article  CAS  PubMed  Google Scholar 

  47. Schrader CE, Edelmann W, Kucherlapati R et al. Reduced isotype switching in splenic B-cells from mice deficient in mismatch repair enzymes. J Exp Med 1999; 190:323–330.

    Article  CAS  PubMed  Google Scholar 

  48. Schrader CE, Vardo J, Stavnezer J. Role for mismatch repair proteins Msh2, Mlh1 and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions. J Exp Med 2002; 195:367–373.

    Article  CAS  PubMed  Google Scholar 

  49. Kadyrov FA, Dzantiev L, Constantin N et al. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006; 126:297–308.

    Article  CAS  PubMed  Google Scholar 

  50. Schrader CE, Guikema JE, Linehan EK et al. Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J Immunol 2007; 179:6064–6071.

    CAS  PubMed  Google Scholar 

  51. Peron S, Metin A, Gardes P et al. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med 2008; 205:2465–2472.

    Article  CAS  PubMed  Google Scholar 

  52. De Vos M, Hayward BE, Charlton R et al. PMS2 mutations in childhood cancer. J Natl Cancer Inst 2006; 98:358–361.

    Article  PubMed  Google Scholar 

  53. Kratz CP, Niemeyer CM, Juttner E et al. Childhood T-cell non-Hodgkin’s lymphoma, colorectal carcinoma and brain tumor in association with cafe-au-lait spots caused by a novel homozygous PMS2 mutation. Leukemia 2007.

    Google Scholar 

  54. Shen HM, Tanaka A, Bozek G et al. Somatic hypermutation and class switch recombination in Msh6(-/-) Ung(-/-) double-knockout mice. J Immunol 2006; 177:5386–5392.

    CAS  PubMed  Google Scholar 

  55. Peron S, Pan-Hammarstrom Q, Imai K et al. A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair. J Exp Med 2007; 204:1207–1216.

    Article  CAS  PubMed  Google Scholar 

  56. Wuerffel R, Wang L, Grigera F et al. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 2007; 27:711–722.

    Article  CAS  PubMed  Google Scholar 

  57. Manis JP, Morales JC, Xia Z et al. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 2004; 5:481–487.

    Article  CAS  PubMed  Google Scholar 

  58. Celeste A, Petersen S, Romanienko PJ et al. Genomic instability in mice lacking histone H2AX. Science 2002; 296:922–927.

    Article  CAS  PubMed  Google Scholar 

  59. Petersen S, Casellas R, Reina-San-Martin B et al. AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 2001; 414:660–665.

    Article  CAS  PubMed  Google Scholar 

  60. Reina-San-Martin B, Chen HT, Nussenzweig A et al. ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med 2004; 200:1103–1110.

    Article  CAS  PubMed  Google Scholar 

  61. Kracker S, Bergmann Y, Demuth I et al. Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci USA 2005; 102:1584–1589.

    Article  CAS  PubMed  Google Scholar 

  62. Manis JP, Gu Y, Lansford R et al. Ku70 is required for late B-cell development and immunoglobulin heavy chain class switching. J Exp Med 1998; 187:2081–2089.

    Article  CAS  PubMed  Google Scholar 

  63. Casellas R, Nussenzweig A, Wuerffel R et al. Ku80 is required for immunoglobulin isotype switching. EMBO J 1998; 17:2404–2411.

    Article  CAS  PubMed  Google Scholar 

  64. Manis JP, Dudley D, Kaylor L et al. IgH class switch recombination to IgG1 in DNA-PKcs-deficient B-cells. Immunity 2002; 16:607–617.

    Article  CAS  PubMed  Google Scholar 

  65. Etzioni A, Ben-Barak A, Peron S et al. Ataxia-telangiectasia in twins presenting as autosomal recessive hyper-immunoglobulin M syndrome. Isr Med Assoc J 2007; 9:406–407.

    PubMed  Google Scholar 

  66. Lahdesmaki A, Taylor AM, Chrzanowska KH et al. Delineation of the role of the Mre11 complex in class switch recombination. J Biol Chem 2004; 279:16479–16487.

    Article  PubMed  Google Scholar 

  67. Pan-Hammarstrom Q, Dai S, Zhao Y et al. ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. J Immunol 2003; 170:3707–3716.

    PubMed  Google Scholar 

  68. Du L, Dunn-Walters DK, Chrzanowska KH et al. A regulatory role for NBS1 in strand-specific mutagenesis during somatic hypermutation. PLoS ONE 2008; 3:e2482.

    Article  PubMed  Google Scholar 

  69. Yan CT, Boboila C, Souza EK et al. IgH class switching and translocations use a robust nonclassical end-joining pathway. Nature 2007; 449:478–482.

    Article  CAS  PubMed  Google Scholar 

  70. Pan-Hammarstrom Q, Jones AM, Lahdesmaki A et al. Impact of DNA ligase IV on nonhomologous end joining pathways during class switch recombination in human cells. J Exp Med 2005; 201:189–194.

    Article  PubMed  Google Scholar 

  71. Soulas-Sprauel P, Le Guyader G, Rivera-Munoz P et al. Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J Exp Med 2007; 204:1717–1727.

    Article  CAS  PubMed  Google Scholar 

  72. Hein K, Lorenz MG, Siebenkotten G et al. Processing of switch transcripts is required for targeting of antibody class switch recombination. J Exp Med 1998; 188:2369–2374.

    Article  CAS  PubMed  Google Scholar 

  73. Yu K, Chedin F, Hsieh CL et al. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B-cells. Nat Immunol 2003; 4:442–451.

    Article  CAS  PubMed  Google Scholar 

  74. Fukita Y, Jacobs H, Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 1998; 9:105–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Durandy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kracker, S., Gardës, P., Durandy, A. (2010). Inherited Defects of Immunoglobulin Class Switch Recombination. In: Ahmad, S.I. (eds) Diseases of DNA Repair. Advances in Experimental Medicine and Biology, vol 685. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6448-9_15

Download citation

Publish with us

Policies and ethics