Skip to main content

Phylogenetic Relationships of Saccharinae and Sorghinae

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Multiple taxonomic and phylogenetic studies have been conducted on sugarcane, Miscanthus, and sorghum, but to date the results have been contradictory and somewhat confusing. A few generalities have emerged. The Andropogoneae is clearly monophyletic. Saccharum and Miscanthus are closely related to each other. Their relationship with Sorghum is less clear, although they are probably more closely related to Sorghum than any of them is to maize or to Andropogon and its immediate relatives. The phylogeny of Andropogoneae is largely unresolved, which leads to a number of problems of taxonomic nomenclature. The solution will require considerably more phylogenetic data on a much broader set of species than has been sampled to date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe T, Melmaiee K, Berg V, Wise RP (2010) Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Func Integr Genomics 10:191–205

    Article  CAS  Google Scholar 

  • Al-Janabi SM, McClelland M, Petersen C, Sobral BWS (1994) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor Appl Genet 88:933–944

    Article  CAS  Google Scholar 

  • Bacci M Jr, Miranda VFO, Martins VG, Figueira AVO, Lemos MV, Pereira JO, Marino CL (2001) A search for markers of sugarcane evolution. Genet Mol Biol 24:169–174

    Article  CAS  Google Scholar 

  • Basappa GP, Muniyamma M (1981) Reproduction in two species of Arundinella Raddi, Poaceae. Proc Indian Acad Sci Sect B, Biol Sci 90:477–483

    Google Scholar 

  • Baurain D, Brinkmann H, Philippe H (2007) Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? Mol Biol Evol 24:6–9

    Article  PubMed  CAS  Google Scholar 

  • Besse P, McIntyre CL, Berding N (1997) Characterisation of Erianthus sect. Ripidium and Saccharum germplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica 93:283–292

    Article  CAS  Google Scholar 

  • Bomblies K, Doebley JF (2005) Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae). Mol Biol Evol 22:1082–1094

    Article  PubMed  CAS  Google Scholar 

  • Brown R (1810) Prodromus florae Novae Hollandiae. J. Johnson & Co., London

    Google Scholar 

  • Brown R (1814) A voyage to Terra Australis. G. & W. Nicol, London

    Google Scholar 

  • Campbell CS, Kellogg EA (1987) Sister group relationships of the Poaceae. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institution, Washington, DC, pp 217–224

    Google Scholar 

  • Celarier RP (1956) Additional evidence for five as the basic chromosome number of the Andropogoneae. Rhodora 58:135–143

    Google Scholar 

  • Chen C-H, Veldkamp JF, Kuoh C-S, Tsai C-C, Chiang Y-C (2009) Segregation of Leptatherum from Microstegium (Andropogoneae, Poaceae) confirmed by internal transcribed spacer DNA sequences. Blumea 54:175–180

    Article  Google Scholar 

  • Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18:37–43

    Article  PubMed  CAS  Google Scholar 

  • Christopher J, Samraj P (1985) Chromosome number reports LXXXVI. Taxon 34:159–164

    Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum: grasses of the world. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Daniels J, Williams CA (1975) The origin of the genus Saccharum. ISSCT Sugarcane Breed Newsl 36:24–39

    Google Scholar 

  • deWet JMJ (1978) Systematics and evolution of Sorghum sect. Sorghum (Gramineae). Am J Bot 65:477–484

    Article  Google Scholar 

  • deWet JMJ, Harlan JR (1974) Tripsacum-maize interaction: a novel cytogenetic system. Genetics 78:493–502

    CAS  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Price HJ (2007) Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Syst Evol 268:29–43

    Article  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004) Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol 249:233–246

    Article  Google Scholar 

  • Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886

    Article  PubMed  CAS  Google Scholar 

  • Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–362

    Google Scholar 

  • Garnier LKM, Dajoz I (2001) Evolutionary significance of awn length variation in a clonal grass of fire-prone savannas. Ecology 82:1720–1733

    Article  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the Poaceae. Ann Missouri Bot Gard 88:373–457

    Article  Google Scholar 

  • Hackel E (1889) Andropogoneae. In: DeCandolle A, DeCandolle C (eds) Monographiae phanerogamarum. G. Masson, Paris

    Google Scholar 

  • Hamby RK, Zimmer EA (1988) Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). Plant Syst Evol 160:29–37

    Article  CAS  Google Scholar 

  • Harlan JR, deWet JMJ (1963) The compilospecies concept. Evolution 17:497–501

    Article  Google Scholar 

  • Hattersley PW, Watson L (1975) Anatomical parameters for predicting photosynthetic pathways of grass leaves: The “maximum lateral cell count” and the “maximum cells distant count”. Phytomorphology 25:325–333

    Google Scholar 

  • Hitchcock AS (1950) Manual of the grasses of the United States. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002a) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002b) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridizaiton to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286

    Article  PubMed  CAS  Google Scholar 

  • Hodnett GL, Burson BL, Rooney WL, Dillon SL, Price HJ (2005) Pollen-pistil interactions result in reproductive isolation between Sorghum bicolor and divergent Sorghum species. Crop Sci 45:1403–1409

    Article  Google Scholar 

  • Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu Y-L, Dhingra A, Bell CD, Soltis DE (2008) Resolving an ancient, rapid radiation in Saxifragales. Syst Biol 57:38–57

    Article  PubMed  CAS  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2007) Plant systematics: a phylogenetic approach. 3rd edition., 3rd edn. Sinauer Asociates, Sunderland, Massachusetts

    Google Scholar 

  • Kellogg EA (2000a) Molecular and morphological evolution in Andropogoneae. In: Jacobs SWL, Everett JE (eds) Grasses: systematics and evolution. CSIRO, Melbourne, pp 149–158

    Google Scholar 

  • Kellogg EA (2000b) The grasses: a case study in macroevolution. Annu Rev Ecol Syst 31:217–238

    Article  Google Scholar 

  • Kellogg EA, Linder HP (1995) Phylogeny of Poales. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 511–542

    Google Scholar 

  • Li X, Wang H, Li H, Zhang L, Teng N, Lin Q, Wang J, Kuang T, Li Z, Li B, Zhang A, Lin J (2006) Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiol Plant 127:701–709

    Article  CAS  Google Scholar 

  • Lukens L, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18:627–638

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1931) Hybridization of maize, Tripsacum and Euchlaena. J Hered 22:329–343

    Google Scholar 

  • Mathews S, Spangler RE, Mason-Gamer RJ, Kellogg EA (2002) Phylogeny of Andropogoneae inferred from phytochrome B, GBSSI, and ndhF. Int J Plant Sci 163:441–450

    Article  Google Scholar 

  • McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (eds) (2007) International code of botanical nomenclature (Vienna Code). Ruggell, Gantner

    Google Scholar 

  • Mehra PN (1982) Cytology of East Indian grasses. Chandigarh, India

    Google Scholar 

  • Michaux A (1803) Flora Boreali-Americana. Levrault, Paris

    Google Scholar 

  • Motzo R, Giunta F (2002) Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat. Aust J Agric Res 53:1285–1293

    Article  Google Scholar 

  • Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  • Nair NV, Nair S, Sreenivasan TV, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Res Crop Evol 46:73–79

    Article  Google Scholar 

  • Ng’uni D, Geleta M, Gatih M, Bryngelsson T (2010) Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann Bot 105:471–480

    Article  PubMed  Google Scholar 

  • Norrmann GA, Quarín CL, Killeen TJ (1994) Chromosome numbers in Bolivian grasses (Gramineae). Ann Missouri Bot Gard 81:768–774

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannag M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman WD, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Peart MH (1979) Experiments on the biological significance of the morphology of seed-dispersal units in grasses. J Ecol 67:843–863

    Article  Google Scholar 

  • Peart MH (1981) Further experiments on the biological significance of the morphology of seed-dispersal units in grasses. J Ecol 69:425–436

    Article  Google Scholar 

  • Peart MH (1984) The effects of morphology, orientation and position of grass diaspores on seedling survival. J Ecol 72:437–453

    Article  Google Scholar 

  • Peart MH, Clifford HT (1987) The influrence of diaspore morphology and soil-surface properties on the distribution of grasses. J Ecol 75:569–576

    Article  Google Scholar 

  • Pohl RW, Davidse G (1971) Chromosome numbers of Costa Rican grasses. Brittonia 23:293–324

    Article  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  PubMed  CAS  Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Stelly DM, Rooney WL (2006) Genotype dependent interspecific hybridization of Sorghum bicolor. Crop Sci 46:2617–2622

    Article  CAS  Google Scholar 

  • Rokas A, Carroll SB (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol 22:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Rudyka EG (1990) Chromosome numbers of vascular plants from the various regions of the USSR. Bot Zhurn 75:1783–1786

    Google Scholar 

  • Sahni M, Bir SS (1985) SOCGI plants chromosome number reports - III. J Cytol Genet 20:205–206

    Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2006) AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genet Res Crop Evol 53:831–842

    Article  CAS  Google Scholar 

  • Sinha RRP, Bhardwaj AK, Singh RK (1990) SOCGI plant chromosome number reports - IX. J Cytol Genet 25:140–143

    Google Scholar 

  • Skendzic EM, Columbus JT, Cerros-Tlatilpa R (2007) Phylogenetics of Andropogoneae (Poaceae: Panicoideae) based on nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Aliso 23:530–544

    Google Scholar 

  • Snowden JD (1935) A classification of the cultivated Sorghums. Bull Misc Inform Royal Bot Gard Kew 5:221–255

    Google Scholar 

  • Sobral BWS, Braga DPV, LaHood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theor Appl Genet 87:843–853

    Article  CAS  Google Scholar 

  • Soreng RJ, Davidse G, Peterson PM, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Morrone O (2008) Catalogue of New World Grasses (Poaceae). http://mobot.mobot.org/W3T/Search/nwgc.html#Status First published 2000 and updated frequently

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • Spangler RE (2003) Taxonomy of Sarga, Sorghum and Vacoparis (Poaceae: Andropogoneae). Aust Syst Bot 16:279–299

    Article  Google Scholar 

  • Stevens PF (2008) Angiosperm phylogeny website. Version 9, June 2008 [and more or less continuously updated since]. 2001 onwards

    Google Scholar 

  • Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32

    Article  CAS  Google Scholar 

  • Takahashi S, Furukawa T, Asano T, Terajima Y, Shimada H, Sugimoto A, Kadowski K (2005) Very close relationship of the chloroplast genomes among Saccharum species. Theor Appl Genet 110:1523–1529

    Article  PubMed  CAS  Google Scholar 

  • Vicentini A, Barber JC, Giussani LM, Aliscioni SS, Kellogg EA (2008) Multiple coincident origins of C4 photosynthesis in the Mid- to Late Miocene. Global Change Biol 14:2963–2977

    Article  Google Scholar 

  • Watson L, Dallwitz MJ (1992) Grass genera of the world. CAB International, Wallingford, CT

    Google Scholar 

  • Wilson WA, Harrington SE, Woodman WL, Lee M, Sorrells ME, McCouch SR (1999) Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153:453–473

    PubMed  CAS  Google Scholar 

  • Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96:1551–1570

    Article  PubMed  Google Scholar 

  • Zanotti CA, Pozner R, Morrone O (2010) Understanding spikelet orientation in Paniceae (Poaceae). Am J Bot 97:717–729

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

I thank Editor Andrew Paterson for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Kellogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kellogg, E.A. (2013). Phylogenetic Relationships of Saccharinae and Sorghinae. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_1

Download citation

Publish with us

Policies and ethics