Skip to main content

Maintenance of Telomeres in Cancer

  • Chapter
  • First Online:
  • 1133 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Tumorigenesis is a complex process that involves several genetic alterations and many attempts before the “correct” set of mutations occurs to create a cancer cell of origin. Fortunately, this event is made infrequent by the evolution of mechanisms able to preserve genomic stability and to limit the proliferation potential of somatic cells. A crucial role in both of these processes is played by the nucleoproteins that localize to the tips of our chromosomes: the telomeres. Proper telomere function is required to maintain genomic stability and in somatic cells progressive telomere shortening serves as a cellular clock that limits proliferation potential. In this chapter I will review the mechanisms that allow the proper function of telomeres in normal cells as well as the mechanisms employed by cancer cells to bypass their normal regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aisner DL, Wright WE, Shay JW (2002) Telomerase regulation: not just flipping the switch. Curr Opin Genet Dev 12(1): 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406(6796): 641–645.

    Article  PubMed  CAS  Google Scholar 

  • Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, Greider CW (1996) Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 56(3): 645–650.

    PubMed  CAS  Google Scholar 

  • Bahram F, Wu S, Oberg F, Luscher B, Larsson LG (1999) Posttranslational regulation of Myc function in response to phorbol ester/interferon-gamma-induced differentiation of v-Myc-transformed U-937 monoblasts. Blood 93(11): 3900–3912.

    PubMed  CAS  Google Scholar 

  • Baird DM (2008) Mechanisms of telomeric instability. Cytogenet Genome Res 122(3–4): 308–314.

    Article  PubMed  CAS  Google Scholar 

  • Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17(2): 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA, Lee HW, DePinho RA, Greenberg R, Greider CW (1997) Mouse model for regulation of telomerase. FASEB J 11(9): 3.

    Google Scholar 

  • Blasco MA, Lee HW, Rizen M, Hanahan D, DePinho R, Greider CW (1998) Mouse models for the study of telomerase. In DJ Chadwick, G Cardew (eds.), Ciba Foundation Symposium. Ciba Foundation, London, pp. 160–170.

    Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349): 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Broccoli D, Smogorzewska A, Chong L, DeLange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17(2): 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Brown JP, Wei WY, Sedivy JM (1997) Bypass of senescence after disruption of p21(CIP1/WAF1) gene in normal diploid human fibroblasts. Science 277(5327): 831–834.

    Article  PubMed  CAS  Google Scholar 

  • Bryan TM, Englezou A, DallaPozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3(11): 1271–1274.

    Article  PubMed  CAS  Google Scholar 

  • Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14(17): 4240–4248.

    PubMed  CAS  Google Scholar 

  • Buscemi G, Zannini L, Fontanella E, Lecis D, Lisanti S, Delia D (2009) The shelterin protein TRF2 inhibits Chk2 activity at telomeres in the absence of DNA damage. Curr Biol 19: 874–879.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Bryan TM, Reddel RR (2008) Increased copy number of the TERT and TERC telomerase subunit genes in cancer cells. Cancer Sci 99(6): 1092–1099.

    Article  PubMed  CAS  Google Scholar 

  • Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8(8): 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Cesare AJ, Reddel RR (2008) Telomere uncapping and alternative lengthening of telomeres. Mech Ageing Dev 129(1–2): 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97(4): 527–538.

    Article  PubMed  CAS  Google Scholar 

  • Chong L, van Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, de Lange T (1995) A human telomeric protein. Science 270(5242): 1663–1667.

    Article  PubMed  CAS  Google Scholar 

  • Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315(5820): 1850–1853.

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5(4): 323–329.

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18): 2100–2110.

    Article  PubMed  CAS  Google Scholar 

  • Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448(7157): 1068–1071.

    Article  PubMed  CAS  Google Scholar 

  • di Fagagna FD, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963): 194–198.

    Article  CAS  Google Scholar 

  • Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26(4): 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt M, Drullinsky P, Guillem J, Moore MAS (1997) Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res 3(11): 1931–1941.

    PubMed  CAS  Google Scholar 

  • Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J et al. (1995) The RNA component of human telomerase. Science 269(5228): 1236–1241.

    Article  PubMed  CAS  Google Scholar 

  • Forsyth NR, Wright WE, Shay JW (2002) Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69(4–5): 188–197.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437(7061): 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA (2000) Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 26(1): 114–117.

    Article  PubMed  CAS  Google Scholar 

  • Gordon KE, Ireland H, Roberts M, Steeghs K, McCaul JA, MacDonald DG, Parkinson EK (2003) High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma. Cancer Res 63(2): 458–467.

    PubMed  CAS  Google Scholar 

  • Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW, DePinho RA (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a(Delta 2/3) cancer-prone mouse. Cell 97(4): 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1): 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4): 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Deng Y, Lin Y, Cosme-Blanco W, Chan S, He H, Yuan G, Brown EJ, Chang S (2007) Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J 26(22): 4709–4719.

    Article  PubMed  CAS  Google Scholar 

  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346(6287): 866–868.

    Article  PubMed  CAS  Google Scholar 

  • Hemann MT, Rudolph KL, Strong MA, DePinho RA, Chin L, Greider CW (2001) Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell 12(7): 2023–2030.

    PubMed  CAS  Google Scholar 

  • Henson JD, Neumann AA, Yeager TR, Reddel RR (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21(4): 598–610.

    Article  PubMed  CAS  Google Scholar 

  • Herrera E, Samper E, Blasco MA (1999) Telomere shortening in mTR–/– embryos is associated with failure to close the neural tube. EMBO J 18(5): 1172–1181.

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer D, Daniels JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126(1): 63–77.

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer D, Palm W, Else T, Daniels JP, Takai KK, Ye JZ, Keegan CE, de Lange T, Hammer GD (2007) Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol 14(8): 754–761.

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de Lange T (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 24(14): 2667–2678.

    Article  PubMed  CAS  Google Scholar 

  • Houghtaling BR, Cuttonaro L, Chang W, Smith S (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14(18): 1621–1631.

    Article  PubMed  CAS  Google Scholar 

  • Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang ACM, Reddel RR (2005) Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol 25(7): 2708–2721.

    Article  PubMed  CAS  Google Scholar 

  • Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283(5406): 1321–1325.

    Article  PubMed  CAS  Google Scholar 

  • Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH, de Lange T (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2(8): E240.

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23(4): 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Lazzerini Denchi E, Celli G, de Lange T (2006) Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev 20(19): 2648–2653.

    Article  PubMed  CAS  Google Scholar 

  • Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101(5): 471–483.

    Article  PubMed  CAS  Google Scholar 

  • Lin SY, Elledge SJ (2003) Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113(7): 881–889.

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6(7): 673–680.

    Article  PubMed  CAS  Google Scholar 

  • Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423(6943): 1013–1018.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1942) The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci U S A 28(11): 458–463.

    Article  PubMed  CAS  Google Scholar 

  • Meeker AK, Hicks JL, Gabrielson E, Strauss WM, De Marzo AM, Argani P (2004) Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 164(3): 925–935.

    PubMed  Google Scholar 

  • Muntoni A, Reddel RR (2005) The first molecular details of ALT in human tumor cells. Hum Mol Genet 14 Spec No. 2: R191–R196.

    Article  PubMed  Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277(5328): 955–959.

    Article  PubMed  CAS  Google Scholar 

  • Niida H, Nakanishi M (2006) DNA damage checkpoints in mammals. Mutagenesis 21(1): 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Olovnikov AM (1971) [Principle of marginotomy in template synthesis of polynucleotides]. Dokl Akad Nauk SSSR 201(6): 1496–1499.

    PubMed  CAS  Google Scholar 

  • Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334.

    Article  PubMed  CAS  Google Scholar 

  • Palm W, Hockemeyer D, Kibe T, de Lange T (2009) Functional dissection of human and mouse POT1 proteins. Mol Cell Biol 29(2): 471–482.

    Article  PubMed  CAS  Google Scholar 

  • Pantic M, Zimmermann S, El Daly H, Opitz OG, Popp S, Boukamp P, Martens UM (2006) Telomere dysfunction and loss of p53 cooperate in defective mitotic segregation of chromosomes in cancer cells. Oncogene 25(32): 4413–4420.

    Article  PubMed  CAS  Google Scholar 

  • Plentz RR, Schlegelberger B, Flemming P, Gebel M, Kreipe H, Manns MP, Rudolph KL, Wilkens L (2005) Telomere shortening correlates with increasing aneuploidy of chromosome 8 in human hepatocellular carcinoma. Hepatology 42(3): 522–526.

    Article  PubMed  CAS  Google Scholar 

  • Potts PR, Yu HT (2007) The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 14(7): 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999a) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5): 701–712.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph KL, Chang S, Schreiber-Agus N, Artandi S, Gottlieb GJ, Depinho RA (1999b) Impaired liver regeneration and decreased hepatocarcinogenesis in telomerase deficient mice. Hepatology 30(4): 624.

    Google Scholar 

  • Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28(2): 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33(5): 787–791.

    Article  PubMed  CAS  Google Scholar 

  • Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12(19): 1635–1644.

    Article  PubMed  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17): 1549–1556.

    Article  PubMed  CAS  Google Scholar 

  • van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92(3): 401–413.

    Article  PubMed  Google Scholar 

  • Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, de Lange T (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18(14): 1649–1654.

    Article  PubMed  CAS  Google Scholar 

  • Zhong ZH, Jiang WQ, Cesare AJ, Neumann AA, Wadhwa R, Reddel RR (2007) Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J Biol Chem 282(40): 29314–29322.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Claire Attwooll, Agnel Sfeir, Keijo Okamoto, and Beatriz Virgen for comments on the manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eros Lazzerini Denchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Denchi, E.L. (2010). Maintenance of Telomeres in Cancer. In: Enders, G. (eds) Cell Cycle Deregulation in Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1770-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1770-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1769-0

  • Online ISBN: 978-1-4419-1770-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics