Skip to main content

Non-linear Field Grading Materials and Carbon Nanotube Nanocomposites with Controlled Conductivity

  • Chapter
  • First Online:

Abstract

Coincident with many applications requiring dielectric materials is the need for filled polymers with tailored conductivity and non-linear resistivity as a function of electric field. For example, in cable terminations, field grading materials are used to reduce the field concentrations at the joint. The field grading materials can be materials with high capacitance, or materials that exhibit non-linear resistivity with field. Applications requiring electromagnetic interference shielding also take advantage of filled polymers with high conductivity. This chapter focuses on the electrical properties of semiconducting nanoparticle filled polymers and carbon nanotube filled polymers with an emphasis on the effect of particle size, shape, dispersion, alignment, and percolation state on the behavior. A brief introduction to relevant applications is followed by a review of relevant percolation theory. This is followed by a discussion of the field grading literature and an introduction to the potential mechanisms leading to non-linearity. Finally, a brief review of conductivity in nanotube filled polymers with a focus on the control of conductivity is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black-polymer composites. Carbon 40(2):139–143

    Article  Google Scholar 

  • Balberg I (2008) Electrical transport phenomena in systems of semiconductor quantum dots. J Nanosci Nanotechnol 8(2):745–758

    Article  Google Scholar 

  • Balberg I, Anderson CH, Alexander S et al (1984a) Excluded volume and its relation to the onset of percolation. Phys Rev B 30:3933–3943

    Article  Google Scholar 

  • Balberg I, Azula D, Toker D et al (2004) Percolation and tunneling in composite materials. Int J Mod Phys B 18(15):1091–2121

    Article  Google Scholar 

  • Balberg I, Binenbaum N, Wagner N (1984b) Percolation thresholds in the three-dimensional sticks system. Phys Rev Lett 52:1465–1468

    Article  Google Scholar 

  • Berhan L, Sastry AM (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E Stat Nonlin Soft Matter Phys 75(4):041120

    Google Scholar 

  • Berlyand L, Golden K (1994) Exact result for the effective conductivity of a continuum percolation model. Phys Rev B 50(4):2114

    Article  Google Scholar 

  • Bernasconi J, Stresler S, Knecht B (1977) Zinc oxide based varistors: a possible mechanism. Solid State Commun 21:867–870

    Article  Google Scholar 

  • Bhushan B, Kashyap SC, Chopra KL (1981) Electrical and dielectric behavior of zinc oxide composite. J Appl Phys 52(4):2932–2936

    Article  Google Scholar 

  • Blaise G (2001) Charge localization and transport in disordered dielectric materials. J Electrostat 50(2):69–89

    Article  Google Scholar 

  • Blythe AR (1986) Electrical properties of polymers. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920

    Article  Google Scholar 

  • Carmona F (1989) Conducting filled polymers. Phys A Stat Theor Phys 157(1):461–461

    Article  MathSciNet  Google Scholar 

  • Celzard A, McRae E, Furdin G et al (1997) Conduction mechanisms in some graphite-polymer composites: the effect of a direct-current electric field. J Phys Condens Matter 9(10):2225–2237

    Article  Google Scholar 

  • Choi ES, Brooks JS, Eaton DL et al (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94(9):6034–6039

    Article  Google Scholar 

  • Donnet JB, Bansal RL, Wang M-J (1993) Carbon black. Marcel Dekker, New York

    Google Scholar 

  • Donzel L, Christen T, Kessler R et al (2004) Silicone composites for HV applications based on microvaristors. Int Conf Solid Dielectr. Toulouse, France, 403–406

    Google Scholar 

  • Du F, Fischer JE, Winey KL (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72:121404

    Article  Google Scholar 

  • Gojny FH, Wichmann MHG, Fiedler B et al (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045

    Article  Google Scholar 

  • Grimaldi C, Balberg I (2006) Tunneling and nonuniversality in continuum percolation systems. Phys Rev Lett 96(6):066602

    Article  Google Scholar 

  • Grossiord N, Loos J, Coning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15(24):2349–2352

    Article  Google Scholar 

  • Grossiord N, Loos J, Van Laake L et al (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater 18(20):3226–3234

    Article  Google Scholar 

  • Grunlan JC, Kim YS, Ziaee S et al (2006) Thermal and mechanical behavior of carbon-nanotube-filled latex. Macromol Mater Eng 291(9):1035–1043

    Article  Google Scholar 

  • Grunlan JC, Mehrabi AR, Bannon MV et al (2004) Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv Mater 16(2): 150–153

    Article  Google Scholar 

  • Gu H, Swager TM (2008) Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv Mater 20(23):4433–4437

    Article  Google Scholar 

  • Hagen SH (1971) Conduction mechanism in silicon carbide voltage-dependent resistors. Philips Res Rep 26(6):486–518

    Google Scholar 

  • Hesamzadeh MR, Hosseinzadeh N, Wolf P (2008) An advanced optimal approach for high voltage AC bushing design. Trans IEEE DEI-15(2):461–466

    Article  Google Scholar 

  • Hong JI, Schadler LS et al (2003) Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Appl Phys Lett 82(12):1956–1958

    Article  Google Scholar 

  • Hong JI, Schadler LS, Siegel RW et al (2006) Electrical behavior of low density polyethylene containing an inhomogeneous distribution of ZnO nanoparticles. J Mater Sci 41(18):5810–5814

    Article  Google Scholar 

  • Hong JI, Winberg P, Schadler LS et al (2005) Dielectric properties of zinc oxide/low density polyethylene nanocomposites. Mater Lett 59(4):473–476

    Article  Google Scholar 

  • Ku CC, Liepins R (1987) Electrical properties of polymers. Hanser, Munich

    Google Scholar 

  • Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Natl Acad Sci USA 105(24):8221–8226

    Article  Google Scholar 

  • Liang GD, Tjong SC (2008) Electrical properties of percolative polystyrene/carbon nanofiber composites. Trans IEEE DEI-15(1):214–220

    Article  Google Scholar 

  • Mårtensson E (2003) Modeling electrical properties of composite materials. Royal Institute of Technology. Department of Electrial Engineering. Stockholm, Sweden, Swedish for Royal Institute of Technology, Ph.D. Thesis

    Google Scholar 

  • Mårtensson E, Gäfvert U (2004) A three-dimensional network model describing a non-linear composite material. J Phys D Appl Phys 37(1):112–119

    Article  Google Scholar 

  • Mårtensson E, Nettelblad B, Gäfvert U et al (1998). Electrical properties of field grading materials with silicon carbide and carbon black. Int Conf Cond Breakdown in Solid Dielectrics. Västerås, Sweden, 548–552

    Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  Google Scholar 

  • Mu M, Walker AM, Torkelson JM (2008) Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 49(5):1332–1337

    Article  Google Scholar 

  • Nakamura S, Saito K, Sawa G et al (1997) Percolation threshold of carbon black – Polyethylene composites. Jpn J Appl Phys 36:5163

    Article  Google Scholar 

  • Nelson PN, Hervig HC (1984) High dielectric constant materials for primary voltage cable terminations. Trans IEEE PAS-103(11):3211–3216

    Google Scholar 

  • Nettelblad B, Mårtensson E, Önneby C et al (2003) Two percolation thresholds due to geometrical effects: experimental and simulated results. J Phys D Appl Phys 36(4):399–405

    Article  Google Scholar 

  • Nikolajeic S, Pekaric-Nad N, Dimitrijevic RM (1997) Optimization of cable terminations. Trans IEEE PD-12(2):527–532

    Google Scholar 

  • Önneby C, Mårtensson E, Gäfvert U et al (2001) Electrical properties of field grading materials influenced by the silicon carbide grain size. Int Conf Solid Dielectrics. Eindhoven, the Netherlands, 43–45

    Google Scholar 

  • Peng H, Sun X (2009) Highly aligned carbon nanotube/polymer composites with much improved electrical conductivities. Chem Phys Lett 471(1–3):103–105

    Article  Google Scholar 

  • Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930

    Article  Google Scholar 

  • Reboul JP, Moussalli G (1976) About some DC conduction processes in carbon black filled polymers. Int J Polym Mater 5(2):133–146

    Article  Google Scholar 

  • Rivenc J, Leby T (1999) An overview of electrical properties for stress grading optimization. Trans IEEE DEI-6(3):309–318

    Article  Google Scholar 

  • Roberts A (1995) Stress grading for high voltage motor and generator coils. IEEE Electr Insul Mag 11(4):26–31

    Article  Google Scholar 

  • Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London

    Google Scholar 

  • Shen Y, Lin Y, Nan C-W (2007) Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv Funct Mater 17(14):2405–2410

    Article  Google Scholar 

  • Sheng P, Kohn RV (1982) Geometric effects in continuous-media percolation. Phys Rev B 26(3):1331

    Article  Google Scholar 

  • Shugg WT (1995) Handbook of electrical and electronic insulating materials. IEEE Press, New York

    Book  Google Scholar 

  • Strumpler R, Rhyner J, Greuter F et al (1995) Nonlinear dielectric composites. Smart Mater Struct 4(3):215–222

    Article  Google Scholar 

  • Tanaka T, Greenwood AN (1983) Advanced power cable technology, vol 1. CRC, Boca Raton, FL

    Google Scholar 

  • Tavernier K, Auckland DW, Varlow BR (1998) Improvement in the electrical performance of electrical insulation by non-linear fillers. Int Conf Cond Breakdown in Solid Dielectrics. Västerås, Sweden, pp 533–538

    Google Scholar 

  • Tucci V, Vitelli M (2000) On the effect of anisotropy in nonlinear composite materials for stress grading applications. Trans IEEE DEI-7(3):387–393

    Google Scholar 

  • Wang X, Herth S, Hugener T et al (2006) Nonlinear electrical behavior of treated ZnO-EPDM nanocomposites. Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp 421–424

    Google Scholar 

  • Wang X, Nelson JK, Schadler LS et al (2009) Hopping conduction based high field nonlinear I-V mechanism for field grading nano-SiC/silicone rubber composite. J Appl Phys In Preparation

    Google Scholar 

  • White SI, DiDonna BA, Mu M et al (2009) Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys Rev B 79(2):024301–024306

    Article  Google Scholar 

  • Winey KI, Kashiwagi T, Mu M (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32(4): 348–353

    Article  Google Scholar 

  • Xu J, Wong CP (2005) Low-loss percolative dielectric composite. Appl Phys Lett 87(8):1–3

    Google Scholar 

  • Yang C, Lin Y, Nan CW (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47(4):1096–1101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Schadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schadler, L.S., Wang, X., Nelson, J.K., Hillborg, H. (2010). Non-linear Field Grading Materials and Carbon Nanotube Nanocomposites with Controlled Conductivity. In: Nelson, J. (eds) Dielectric Polymer Nanocomposites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1591-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1591-7_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1590-0

  • Online ISBN: 978-1-4419-1591-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics