Skip to main content

The Chemistry and Physics of the Interface Region and Functionalization

  • Chapter
  • First Online:

Abstract

A description is given of the chemistry and physics of the interface region of polymer nanodielectrics, covering the formation of the nanoparticles, their functionalization, and the selection and use of coupling agents for covalent bonding to the polymer matrix. The main focus is on spherical inorganic nanoparticles dispersed into polymer melts and on natural and synthetic clays and micas and other layered inorganics which are intercalated or exfoliated before introduction of a polymer solution in a polar solvent or from the melt. The chemistry addresses the chemical structure of the nanoparticles and polymer, the bonding that is present, and the role of coupling agents and compatibilizers. The physics addresses the morphology, glass transition temperature, and free volume of the polymer nanocomposite; and interfacial polarization, dielectric relaxation, electron paramagnetic resonance, and modulated differential scanning calorimetric effects. The views of investigators on the understanding of the interface in this burgeoning field are presented and compared.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behavior at the nanometric size scale. J Phys Condens Matter 17:R461–R524

    Article  Google Scholar 

  2. Artbauer J (1996) The electric strength of polymers. J Phys D 29:446–456

    Article  Google Scholar 

  3. Bendler JT, Fontanella JJ, Ahlesinger MF et al (2003) The need to reconsider traditional free volume theory for polymer electrolytes. Electrochim Acta 48:2267–2272

    Article  Google Scholar 

  4. Bendler JT, Fontanella JJ, Shlesinger MF et al(2005) Free-volume dynamics in glasses and supercooled liquids. Phys Rev E71:1–10

    Google Scholar 

  5. Bendler JT, Fontanella JJ, Shlesinger MF et al(2009) The defect diffusion model and the glass transition in nanoscale and bulk films. J Comput Theor Nanosci 6:1–5

    Article  Google Scholar 

  6. Brinker CJ, Scherer GW (1990) sol–gel science. Academic, Boston

    Google Scholar 

  7. Broutman LJ, Agarwal BD (1973) SPI 28th Annu Tech Conf Reinf Plast 5-B

    Google Scholar 

  8. Chen BK, Du JU, Hou CW (2008) The effects of chemical structure on the dielectric properties of polyetherimide and nanocomposites. Trans IEEE DEI-15:127–133

    Article  Google Scholar 

  9. Consolati G, Quasso F (2007) Estimation of free volume holes in amorphous polymers by means of positron annihilation spectroscopy. Simha Symposium on Polymer Physics, October 17–18

    Google Scholar 

  10. Crank J, Park GS (1968) Diffusion in polymers. Academic, London

    Google Scholar 

  11. Datta S, Lohse DJ (1996) Polymeric compatabilizers: uses and benefits in polymer blends. Hanser Gardner, New York. ISBN 9781569901946

    Google Scholar 

  12. Devins JC, Rzad SJ (1977) A new class of additives to inhibit tree growth in solid extruded cable insulation. EPRI Project RP 7851-1, Final Report: August 1977

    Google Scholar 

  13. Fabiani D, Montanari GC, Testa L (2010) Effect of aspect ratio and water contamination on the electrical properties of nanostructured insulating materials. Trans IEEE DEI-17 In press

    Google Scholar 

  14. Fontanella JJ, Wintersgill MC, Edmondson CA et al (2009) Water-associated dielectric relaxation in oxide nanoparticles. J Phys D Appl Phys 42:1–6

    Article  Google Scholar 

  15. Frechette MF, Larocque RY, Trudeau M et al (2008) Nanostructured polymer microcomposites: a distinct class of insulating materials. Trans IEEE DEI-15:90–105

    Article  Google Scholar 

  16. Frubing P, Blischke D, Gerhard-Mulhaupt G et al (2001) Complete relaxation map of polyethylene: filler-induced chemical modifications as dielectric probes. J Phys D Appl Phys 34:3051–3057

    Article  Google Scholar 

  17. Fuse N, Okada M, Ohki Y et al (2009) Photoluminescence in polyamide/mica and polyethylene/MgO nanocomposites induced by ultraviolet photons. Trans IEEE DEI-15:1215–1223

    Article  Google Scholar 

  18. Fuse N, Sato H, Tanaka T et al (2008) Effects of mica nanofillers on the complex permittivity of polyamide nanofillers. IEEE DEIS Conf Electr Insul Dielectr Phen 6–5

    Google Scholar 

  19. Fuse N, Sato H, Ohki Y et al (2009) Effects of nanofiller loading on the molecular motion and carrier transport in polyamide. Trans IEEE DEI-16:524–530

    Article  Google Scholar 

  20. Gaehde J (1975) Effect of silane-modified Kaolin filler on the orientation of high density polyethylene in the interface region. Plaste Kautschuk 22:626

    Google Scholar 

  21. Green CD, Vaughan AS, Mitchell GR et al (2008) Structure property relationships in polyethylene/montmorillonite nanodielectrics. Trans IEEE DEI-15:134–143

    Article  Google Scholar 

  22. Green CD, Vaughan A (2008) Nanodielectrics – how much do we really understand, IEEE Electr Insul Mag 24:6–16

    Article  Google Scholar 

  23. Hill NE, Vaughan WE, Price AH et al (1969) Dielectric properties and molecular behavior. Van Nostrand Reinhold Company, London

    Google Scholar 

  24. Hummel DO (1966) Infrared spectra of polymer in the medium and long wavelength range. Polymer Reviews 14: Interscience Publishers, Wiley, New York

    Google Scholar 

  25. Imai T, Hirano Y, Hirai H et al (2002) Preparation and properties of epoxy-organically modified layered silicate nanocomposites. Proc, IEEE Int Symp Electr Insul: 379–383

    Google Scholar 

  26. Jeschke G, Panek G, Schleidt S et al (2003) Addressing the interface in polymer clay nanocomposites by electron paramagnetic resonance spectroscopy on surfactant probes. Polymer Nanocomposites 2003, International Symposium on Polymer Nanocomposites Science and Technology Paper 49

    Google Scholar 

  27. Kahn FJ (1973) The orientation of liquid crystals on mineral surfaces treated with silane coupling agents. Appl Phys Lett 22:386

    Article  Google Scholar 

  28. Katahira S, Yasue K, Inagaki M (1999) Intercalation of E-caprolactam ions into organic hosts. J Mater Res 14:1178–1180

    Article  Google Scholar 

  29. Kochetov R, Andritsch T, Lafont U et al (2009) Preparation and dielectric properties of epoxy-BN and epoxy AlN nanocomposites. IEEE Electr Insul Conf: 397–400

    Google Scholar 

  30. Kozako M, Fuse N, Ohki Y et al (2004) Surface degradation of polyamide nanocomposites caused by partial discharges using IEC(b) electrodes. Trans IEEE DEI-11:833–839

    Article  Google Scholar 

  31. Lewis TJ (1994) Nanometric dielectrics. Trans IEEE DEI-1:812–815

    Article  Google Scholar 

  32. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. Trans IEEE DEI-11:739–753

    Article  Google Scholar 

  33. Lewis TJ (2005) Interfaces: nanometric dielectrics. J Phys D Appl Phys 38:202–212

    Article  Google Scholar 

  34. MacCrone RK, Nelson JK, Schadler LS et al (2007) The use of electron paramagnetic resonance (EPR) in the probing of the dielectric interface. IEEE 9th Int Conf Solid Dielectr: 428–431

    Google Scholar 

  35. MacCrone RK, Nelson JK, Smith RC et al (2008) The use of electron paramagnetic resonance in the probing of the nano-dielectric interface. Trans IEEE DEI-15:197–204

    Article  Google Scholar 

  36. McCrum NG, Read BA, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, London. Chapters 2, 5, 8–14

    Google Scholar 

  37. Miltner HE, Van Mele B (2005) Experimental evidence for reduced chain segment mobility in polymeric nanocomposites. International Symposium on Polymer Nanocomposites Science and Technology: Paper 7.02

    Google Scholar 

  38. Mohapatra SR, Thakur AK, Choudhary RNP (2008) Vibrational spectroscopy analysis of ion conduction mechanism in dispersed phase polymer nanocomposites. J Polym Sci B Polym Phys 47(1):60–71

    Article  Google Scholar 

  39. Montanari GC, Fabiani D, Palmieri F et al (2004) Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. Trans IEEE DEI-11:754–762

    Article  Google Scholar 

  40. Nelson JK, Fothergill JC (2004) Internal charge behavior of nanocomposites. Nanotechnology 15:1–10

    Article  Google Scholar 

  41. Nelson JK, Utracki LA, MacCrone RK et al (2004) Role of the interface in determining the dielectric properties of nanocomposites. IEEE DEIS Conf Electr Insul Dielectr Phen: 314–317

    Google Scholar 

  42. Nies E, Stroeks A (1990) A modified hole theory of polymeric fluids. 1. Equation of state of pure components. Macromolecules 23:4008

    Article  Google Scholar 

  43. Nies E, Xie H (1993) Quasi-chemical approximation for nonrandomness in the hole theory of polymeric fluids. 1. Equation of state behavior of pure components. Macromolecules 26:1683

    Article  Google Scholar 

  44. Plueddemann EP (1982) Silane coupling agents. Plenum, New York. pp 1–235

    Google Scholar 

  45. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  46. Reading M, Luget A, Wilson R (1994) Modulated differential calorimetry. Thermochimica Acta 238:295–307

    Article  Google Scholar 

  47. Reed CW (1971) The influence of impurities on the dielectric losses of poly(2,6-dimethyl-1,4-phenylene ether). The dielectric properties of polymers. Plenum, New York. pp 191–199

    Google Scholar 

  48. Reed, CW (1972) The influence of residual solvent and crystallinity on the dielectric relaxation of solvent-cast polymer films. 1971 Annual report, conference on electrical insulation and dielectrics phenomena, National Academy of Sciences Pub ISBN 0-309-02032-8, p 89

    Google Scholar 

  49. Rogers PA (1993a) Pressure-volume-temperature relationships for polymeric liquids: a review of equations of state and their characteristic parameters of 56 polymers. J Appl Polym Sci 48:1061–1080

    Article  Google Scholar 

  50. Rogers PA (1993b) Pressure-volume-temperature relationships for poly(vinylidene fluoride) and polyamide-11. J Appl Polym Sci 50:2075–2083

    Article  Google Scholar 

  51. Roy M, Nelson JK, Reed CW (2005) Polymer nanocomposite dielectrics – the role of the interface. Trans IEEE DEI-12:629–643

    Article  Google Scholar 

  52. Schamm S, Berjoan R, Barathieu P (2004) Study of the chemical and structural organization of SIPOS films at the nanometer scale by TEM-EELS and ZPS. Mater Sci Eng B107:58–65

    Article  Google Scholar 

  53. Simha R, Somcynsky T (1969) On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules 2:342–350

    Article  Google Scholar 

  54. Smith RC, Liang C, Landry M, et al (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. Trans IEEE DEI-15:187–196

    Article  Google Scholar 

  55. Singha S, Thomas MJ (2008a) Permittivity and tan δ characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz. Trans IEEE DEI-15:2–11

    Article  Google Scholar 

  56. Singha S, Thomas MJ (2008b) Dielectric properties of epoxy nanocomposites. Trans IEEE DEI-15:12–23

    Article  Google Scholar 

  57. Singha S, Thomas MJ (2008c) Reduction of permittivity in epoxy nanocomposites at low nanofiller loadings. IEEE DEIS Conf Electr Insul Dielectr Phen: 8–6

    Google Scholar 

  58. Singha S, Thomas MJ (2009) Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. Trans IEEE DEI-16:531–542

    Article  Google Scholar 

  59. Singha S, Thomas MJ, Kulkarni A (2009) Complex permittivity of epoxy nanocomposites at low frequency. Trans IEEE DEI-17 In press

    Google Scholar 

  60. Sternstein SS, Zhu A-J (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  Google Scholar 

  61. Sun Y, Zhang Z, Wong CP (2005) Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46:2297–2305

    Article  Google Scholar 

  62. Tabatabaei S, Shukohfar A, Aghababazadeh R et al (2006) Experimental study of the synthesis and characterization of silica nanoparticles via the sol–gel method. J Phys Conf Ser 26:371–374

    Article  Google Scholar 

  63. Tagami N, Okada M, Hirai N et al (2008) Dielectric properties of epoxy-clay nanocomposites – effects of curing agent and clay dispersion method. Trans IEEE DEI-15:24–32

    Article  Google Scholar 

  64. Takada T, Hayase Y, Tanaka Y et al (2008) Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposites. Trans IEEE DEI-15:152–160

    Article  Google Scholar 

  65. Takala M, Kartunnen M, Salovaara P et al (2008) Dielectric properties of nanostructured polypropylene – polyhedral oligomeric silsesquioxane. Trans IEEE DEI-15:40–51

    Article  Google Scholar 

  66. Takala M, Karttunen K, Peltro J et al (2008) Thermal, mechanical, and dielectric properties of nanostructured epoxy-polyhedral oligomeric silsesquioxane composites. Trans IEEE DEI-15:1224–1235

    Article  Google Scholar 

  67. Tanaka T, Montanari GC, Mulhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation: perspectives for processing technologies, material characterization, and future applications. Trans IEEE DEI-11:763–784

    Article  Google Scholar 

  68. Tobolsky AV (1960) Properties and structure of polymers. Wiley, New York. pp 43–71

    Google Scholar 

  69. Tuncer E, Sauers I, James DR et al (2008) Nanodielectric system for cryogenic applications: barium titanate filled polyvinyl alcohol. Trans IEEE DEI-15:236–242

    Article  Google Scholar 

  70. Utracki LA, Simha R (2001) Analytical representation of solutions to lattice-hole theory. Macromol Theor Simul 10:17–23

    Article  Google Scholar 

  71. Utracki LA, Simha R, Garcia-Rejon A (2003) Pressure-volume-temperature dependence of poly-E-caprolactam/clay nanocomposites. Macromolecules 36:2114–2121

    Article  Google Scholar 

  72. Vaughan AS, Swingler SG, Zhang Y (2006) Polyethylene nanodielectrics: the influence of nanoclays on structure formation and dielectric breakdown. Trans IEE Jpn 126:1057–1063

    Article  Google Scholar 

  73. Vo HT, Shi FG (2002) Towards model based engineering of optoelectronic packaging materials: dielectric constant modeling. Microelectr J 33:409–415

    Article  Google Scholar 

  74. Wells AF (1950) Structural inorganic chemistry. Oxford University Press, Oxford. pp 76–78, 358–371, 567–569

    Google Scholar 

  75. Wunderlich B, Jin YY, Boller A (1994) Mathematical-description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta 238:277–293

    Article  Google Scholar 

  76. Yang DQ, Meunier M, Sacher E (2005) The surface modification of nanoporous SiOx thin films with a monofunctional organosiloxane. Appl Surf Sci 252(5):1197–1201

    Article  Google Scholar 

  77. Yang DQ, Gillet JN, Meunier M et al (2005) Room temperature oxidation kinetics of Si nanoparticles in air, determined by x-ray photoelectron spectroscopy. J Appl Phys 97:024303

    Article  Google Scholar 

  78. Yun DS, Kim HJ, Yoo JW (2005) Preparation of silica nanospheres: effect of silicon alkoxide and alcohol on silica nanospheres. Bull Korean Chem Soc 26:1927–1928

    Article  Google Scholar 

  79. Zhang C, Mason R, Stevens GC (2006) Preparation, characterization, and dielectric properties of epoxy and polyethylene nanocomposites. IEEJ Trans Fundam Mater 126:1105–1111

    Article  Google Scholar 

  80. Zhang C, Stevens GC (2008) The dielectric response of polar and non-polar nanodielectrics. Trans IEEE DEI-15:606–617

    Article  Google Scholar 

  81. Zou C, Fothergill JC, Rowe SW (2008) The effect of water absorption on the dielectric properties of epoxy nanocomposites. Trans IEEE DEI-15:106–117

    Article  Google Scholar 

Download references

Acknowledgements

The writer acknowledges many pleasant and productive interactions with J.K Nelson, R.A MacCrone, L.S Schadler, and several students, at the Rensselaer Polytechnic Institute, during their work on SiO2-XLPE nanocomposites, in triggering his involvement in this field; and with M.F. Frechette of IREQ in collaboration on the fundamentals of nanodielectric science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reed, C.W. (2010). The Chemistry and Physics of the Interface Region and Functionalization. In: Nelson, J. (eds) Dielectric Polymer Nanocomposites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1591-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1591-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1590-0

  • Online ISBN: 978-1-4419-1591-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics