Skip to main content

Circadian Clock, Cell Cycle and Cancer

Circadian Rhythm and Cell Growth Regulation

  • Chapter
  • First Online:
The Circadian Clock

Part of the book series: Protein Reviews ((PRON,volume 12))

Abstract

The circadian clock is a fundamental biological process that is pervasive in living organisms. Over the past decade, much has been learned about the molecular mechanism of the mammalian circadian clock. Studies have also led to the revelation of various connections between the circadian clock function and other basic biological processes, including the cell cycle and the DNA damage response. Several key regulators of circadian function have been identified to interact with regulators of DNA damage response pathways. In addition, expression of many key regulators of the cell cycle and the DNA damage response pathways display circadian rhythmic profiles, and these temporal expression profiles are altered in circadian clock deficient animals. Clinical studies have revealed deregulation of several core clock genes expression in different type of human cancers. Genetic studies from mice and Neurospora further suggest that the integration of the circadian clock with the cell division and the DNA damage response is very ancient. Understanding of the mechanistic details of how these basic processes are integrated and coordinated to achieve homeostasis will lead to new ideas for healthier life styles, and develop novel therapeutic strategies for many human disorders, including cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

APC:

Anaphase-promoting complex

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia Rad-3-related

ATRIP:

ATR interacting protein

Bmal1:

Brain and muscle ARNT-like 1 gene, also known as aryl hydrocarbon receptor nuclear translocator-like, Arntl

BRCA1:

Breast cancer 1

Chk1/2:

Checkpoint kinase 1/2

Cdk:

Cyclin dependent-kinases

Cry1:

Cryptochrome1 gene

DDR:

DNA damage response

DNA-PK:

DNA-dependent protein kinase

DSBs:

Double-strand breaks

Frq:

Frequency gene

G0 phase:

Quiescent cells stay in G0 phase, outside the cell cycle

G1 phase:

The first gap in the cell cycle

G2 phase:

The second gap in the cell cycle

HR:

Homologous recombination

IR:

Ionizing radiation

M phase:

The mitotic phase in the cell cycle

mPer2:

Mouse period2 gene

Npas2:

Neuronal PAS domain protein2, a paralogue of Clock gene

Rb:

Retinoblastoma gene

ROS:

Reactive oxygen species

S phase:

The DNA sysnthesis phase of the cell cycle

SCN:

Suprachiasmatic nuclei

SSBs:

Single-strand breaks

Tim:

Timeless gene

UV:

ultraviolet light

References

  1. Akerstedt T et al (1984) Shift work and cardiovascular disease. Scand J Work Environ Health 10(6 Spec No):409–414

    Google Scholar 

  2. Stevens RG et al (1992) Electric power, pineal function, and the risk of breast cancer. FASEB J 6(3):853–860

    PubMed  CAS  Google Scholar 

  3. Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93(20):1557–1562

    Article  PubMed  CAS  Google Scholar 

  4. Rafnsson V et al (2001) Risk of breast cancer in female flight attendants: a population-based study (Iceland). Cancer Causes Control 12(2):95–101

    Article  PubMed  CAS  Google Scholar 

  5. Kubo T et al (2006) Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. Am J Epidemiol 164(6):549–555

    Article  PubMed  Google Scholar 

  6. Rosbash M (1995) Molecular control of circadian rhythms. Curr Opin Genet Dev 5(5):662–668

    CAS  Google Scholar 

  7. Iwasaki K, Thomas JH (1997) Genetics in rhythm. Trends Genet 13(3):111–115

    Article  PubMed  CAS  Google Scholar 

  8. Antoch MP et al (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89(4):655–667

    Article  PubMed  CAS  Google Scholar 

  9. King DP et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89(4):641–653

    Article  PubMed  CAS  Google Scholar 

  10. Sun ZS et al (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90(6):1003–1011

    Article  PubMed  CAS  Google Scholar 

  11. Hastings M, Maywood ES (2000) Circadian clocks in the mammalian brain. Bioessays 22(1):23–31

    Article  PubMed  CAS  Google Scholar 

  12. Fu L et al (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50

    Article  PubMed  CAS  Google Scholar 

  13. Chen-Goodspeed M, Lee CC (2007) Tumor suppression and circadian function. J Biol Rhythms 22(4):291–298

    Article  PubMed  CAS  Google Scholar 

  14. Gery S, Koeffler HP (2007) The role of circadian regulation in cancer. Cold Spring Harb Symp Quant Biol 72:459–464

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197(4308):1089–1091

    Article  PubMed  CAS  Google Scholar 

  16. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586

    Article  PubMed  CAS  Google Scholar 

  17. Ralph MR et al (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978

    Article  PubMed  CAS  Google Scholar 

  18. Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2(7):521–526

    Article  PubMed  CAS  Google Scholar 

  19. Shearman LP et al (2000) Interacting molecular loops in the mammalian circadian clock. Science 288(5468):1013–1019

    Article  PubMed  CAS  Google Scholar 

  20. Zheng B et al (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400(6740):169–173

    Article  PubMed  CAS  Google Scholar 

  21. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet. 15 Spec No. 2:R271–R277

    Google Scholar 

  22. Reick M et al (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293(5529):506–509

    Article  PubMed  CAS  Google Scholar 

  23. Bertolucci C et al (2008) Evidence for an overlapping role of CLOCK and NPAS2 transcription factors in liver circadian oscillators. Mol Cell Biol 28(9):3070–3075

    Article  PubMed  CAS  Google Scholar 

  24. Preitner N et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian ­transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    Article  PubMed  CAS  Google Scholar 

  25. Triqueneaux G et al (2004) The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker. J Mol Endocrinol 33(3):585–608

    Article  PubMed  CAS  Google Scholar 

  26. Sato TK et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43(4):527–537

    Article  PubMed  CAS  Google Scholar 

  27. Guillaumond F et al (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20(5):391–403

    Article  PubMed  CAS  Google Scholar 

  28. Honma S et al (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419(6909):841–844

    Article  PubMed  CAS  Google Scholar 

  29. Albrecht U et al (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91(7):1055–1064

    Article  PubMed  CAS  Google Scholar 

  30. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10(5):543–545

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto T et al (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18

    Article  PubMed  CAS  Google Scholar 

  32. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–634

    Article  PubMed  CAS  Google Scholar 

  33. Lim DS et al (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404(6778):613–617

    Article  PubMed  CAS  Google Scholar 

  34. Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1(3):179–186

    Article  PubMed  CAS  Google Scholar 

  35. Niida H, Nakanishi M (2006) DNA damage checkpoints in mammals. Mutagenesis 21(1):3–9

    Article  PubMed  CAS  Google Scholar 

  36. Garrett MD (2001) Cell cycle control and cancer. Curr Sci 81(5):8

    Google Scholar 

  37. Todd R, Wong DT (1999) Oncogenes. Anticancer Res 19(6A):4729–4746

    Google Scholar 

  38. Sherr CJ (2004) Principles of tumor suppression. Cell 116(2):235–246

    Article  PubMed  CAS  Google Scholar 

  39. Stambolic V, Mak TW, Woodgett JR (1999) Modulation of cellular apoptotic potential: ­contributions to oncogenesis. Oncogene 18(45):6094–6103

    Article  PubMed  CAS  Google Scholar 

  40. Marshall CJ (1988) The ras oncogenes. J Cell Sci Suppl 10:157–169

    PubMed  CAS  Google Scholar 

  41. Carson DA, Lois A (1995) Cancer progression and p53. Lancet 346(8981):1009–1011

    Article  PubMed  CAS  Google Scholar 

  42. Boulaire J, Fotedar A, Fotedar R (2000) The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris) 48(3):190–202

    Google Scholar 

  43. Mailand N et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429

    Article  PubMed  CAS  Google Scholar 

  44. Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4:107–114

    PubMed  CAS  Google Scholar 

  45. Perry JA, Kornbluth S (2007) Cdc25 and Wee1: analogous opposites? Cell Div 2:12

    Google Scholar 

  46. Bischoff JR, Plowman GD (1999) The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9(11):454–459

    Article  PubMed  CAS  Google Scholar 

  47. Zou H et al (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285(5426):418–422

    Article  PubMed  CAS  Google Scholar 

  48. Jin DY, Spencer F, Jeang KT (1998) Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93(1):81–91

    Article  PubMed  CAS  Google Scholar 

  49. Michel LS et al (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409(6818):355–359

    Article  PubMed  CAS  Google Scholar 

  50. Cahill DP et al (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392(6673):300–303

    Article  PubMed  CAS  Google Scholar 

  51. Meyn MS (1995) Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 55(24):5991–6001

    PubMed  CAS  Google Scholar 

  52. Liu A et al (2005) Alterations of DNA damage-response genes ATM and ATR in pyothorax-associated lymphoma. Lab Invest 85(3):436–446

    Article  PubMed  CAS  Google Scholar 

  53. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3(3):155–168

    Article  PubMed  CAS  Google Scholar 

  54. Hurley PJ, Bunz F (2007) ATM and ATR: components of an integrated circuit. Cell Cycle 6(4):414–417

    PubMed  CAS  Google Scholar 

  55. Matsuoka S et al (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97(19):10389–10394

    Article  PubMed  CAS  Google Scholar 

  56. Bakkenist CJ, Kastan MB (2004) Initiating cellular stress responses. Cell 118(1):9–17

    Article  PubMed  CAS  Google Scholar 

  57. Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31(7):402–410

    Article  PubMed  CAS  Google Scholar 

  58. Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282(5395):1893–1897

    Article  PubMed  CAS  Google Scholar 

  59. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12(19):2973–2983

    Article  PubMed  CAS  Google Scholar 

  60. Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12(11):509–516

    Article  PubMed  CAS  Google Scholar 

  61. Kumagai A, Dunphy WG (2006) How cells activate ATR. Cell Cycle 5(12):1265–1268

    PubMed  CAS  Google Scholar 

  62. Syljuasen RG et al (2005) Inhibition of human Chk1 causes increased initiation of DNA ­replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25(9):3553–3562

    Article  PubMed  CAS  Google Scholar 

  63. Sweeney BMAH (1958) Woodland, rhythmic cell division in populations of gonyaulax polyedra. J Protozool 5:217–224

    Google Scholar 

  64. Woelfle MA et al (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14(16):1481–1486

    Article  PubMed  CAS  Google Scholar 

  65. Scheving LE et al (1978) Circadian variation in cell division of the mouse alimentary tract, bone marrow and corneal epithelium. Anat Rec 191(4):479–486

    Article  PubMed  CAS  Google Scholar 

  66. Scheving LE (1981) Circadian rhythms in cell proliferation: their importance when investigating the basic mechanism of normal versus abnormal growth. Prog Clin Biol Res 59C(00):39–79

    PubMed  CAS  Google Scholar 

  67. Panda S et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320

    Article  PubMed  CAS  Google Scholar 

  68. Storch KF et al (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6884):78–83

    Article  PubMed  CAS  Google Scholar 

  69. Miller BH et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104(9):3342–3347

    Article  PubMed  CAS  Google Scholar 

  70. Grechez-Cassiau A et al (2008) The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 283(8):4535–4542

    Article  PubMed  CAS  Google Scholar 

  71. Matsuo T et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259

    Article  PubMed  CAS  Google Scholar 

  72. Cardone L, Sassone-Corsi P (2003) Timing the cell cycle. Nat Cell Biol 5(10):859–861

    Article  PubMed  CAS  Google Scholar 

  73. Barnes JW et al (2003) Requirement of mammalian Timeless for circadian rhythmicity. Science 302(5644):439–442

    Article  PubMed  CAS  Google Scholar 

  74. Unsal-Kacmaz K et al (2005) Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25(8):3109–3116

    Article  PubMed  CAS  Google Scholar 

  75. Unsal-Kacmaz K et al (2007) The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 27(8):3131–3142

    Article  PubMed  CAS  Google Scholar 

  76. Pregueiro AM et al (2006) The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles. Science 313(5787):644–649

    Article  PubMed  CAS  Google Scholar 

  77. Gery S et al (2005) Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood 106(8):2827–2836

    Article  PubMed  CAS  Google Scholar 

  78. Yoon K, Smart RC (2004) C/EBPalpha is a DNA damage-inducible p53-regulated mediator of the G1 checkpoint in keratinocytes. Mol Cell Biol 24(24):10650–10660

    Article  PubMed  CAS  Google Scholar 

  79. Chen Z et al (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316(5833):1916–1919

    Article  PubMed  CAS  Google Scholar 

  80. Chen Z, McKnight SL (2007) A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles. Cell Cycle 6(23):2906–2912

    Article  PubMed  CAS  Google Scholar 

  81. Reinberg A (1975) Circadian changes in the temperature of human beings. Bibl Radiol 6:128–139

    PubMed  Google Scholar 

  82. Mansfield CM et al (1973) Circadian rhythm in the skin temperature of normal and cancerous breasts. Int J Chronobiol 1(3):235–243

    PubMed  CAS  Google Scholar 

  83. Klevecz RR et al (1987) Circadian gating of S phase in human ovarian cancer. Cancer Res 47(23):6267–6271

    PubMed  CAS  Google Scholar 

  84. Lee CC (2006) Tumor suppression by the mammalian period genes. Cancer Causes Control 17(4):525–530

    Article  PubMed  Google Scholar 

  85. Barlow C et al (1999) Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice. Nat Genet 21(4):359–360

    Article  PubMed  CAS  Google Scholar 

  86. Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  PubMed  CAS  Google Scholar 

  87. Hollander MC, Fornace AJ Jr (2002) Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21(40):6228–6233

    Article  PubMed  CAS  Google Scholar 

  88. Ramsay G, Evan GI, Bishop JM (1984) The protein encoded by the human proto-oncogene c-myc. Proc Natl Acad Sci U S A 81(24):7742–7746

    Article  PubMed  CAS  Google Scholar 

  89. Prochownik EV, Li Y (2007) The ever expanding role for c-Myc in promoting genomic instability. Cell Cycle 6(9):1024–1029

    PubMed  CAS  Google Scholar 

  90. Yang X et al (2009) Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res Treat 117(2): 423–431

    Google Scholar 

  91. Hua H et al (2006) Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci 97(7):589–596

    Article  PubMed  CAS  Google Scholar 

  92. Wood PA et al (2008) Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res 6(11):1786–1793

    Article  PubMed  CAS  Google Scholar 

  93. Ayyanan A et al (2006) Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci U S A 103(10):3799–3804

    Article  PubMed  CAS  Google Scholar 

  94. Saldanha G et al (2004) Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol 151(1):157–164

    Article  PubMed  CAS  Google Scholar 

  95. Zhang J et al (2008) High expression of circadian gene mPer2 diminishes radiosensitivity of tumor cells. Cancer Biother Radiopharm 23(5):561–570

    Article  PubMed  CAS  Google Scholar 

  96. Gery S et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382

    Article  PubMed  CAS  Google Scholar 

  97. Chen ST et al (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26(7):1241–1246

    Article  PubMed  CAS  Google Scholar 

  98. Zhou BP et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3(11):973–982

    Article  PubMed  CAS  Google Scholar 

  99. Winter SL et al (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9(10):797–800

    Article  PubMed  CAS  Google Scholar 

  100. Yarden RI et al (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30(3):285–289

    Article  PubMed  Google Scholar 

  101. Chabalier-Taste C et al (2008) BRCA1 is regulated by Chk2 in response to spindle damage. Biochim Biophys Acta 1783(12):2223–2233

    Article  PubMed  CAS  Google Scholar 

  102. Pogue-Geile KL, Lyons-Weiler J, Whitcomb DC (2006) Molecular overlap of fly circadian rhythms and human pancreatic cancer. Cancer Lett 243(1):55–57

    Article  PubMed  CAS  Google Scholar 

  103. Hoffman AE et al (2008) The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response. Mol Cancer Res 6(9):1461–1468

    Article  PubMed  CAS  Google Scholar 

  104. Zhu Y et al (2008) Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat 107(3):421–425

    Article  PubMed  CAS  Google Scholar 

  105. Zhu Y et al (2007) Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin’s lymphoma. Int J Cancer 120(2):432–435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chi Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhao, Z., Lee, C.C. (2010). Circadian Clock, Cell Cycle and Cancer. In: Albrecht, U. (eds) The Circadian Clock. Protein Reviews, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1262-6_6

Download citation

Publish with us

Policies and ethics